สึนามิในญี่ปุ่น แผ่นดินใหว

ระบบสุริยะ dekphysics

เนื้อหาบทที่8 เรื่อง เทคโนโลยีอวกาศ

เทคโนโลยีอวกาศเป็นการนำหลักการทางวิทยาศาสตร์ไปใช้ในการขยายขอบเขตการศึกษาค้นคว้าทางด้านดาราศาสตร์และอวกาศ และประยุกต์ความรู้ที่ได้มาพัฒนาความเป็นอยู่ของมนุษย์เพื่อความอยู่รอดอย่างมีความสุขและยั่งยืน
- กล้องโทรทรรศน์เป็นเครื่องมือขยายขอบเขตการเห็นของมนุษย์ ช่วยขยายให้เห็นรายละเอียดของดาวเคราะห์และวัตถุท้องฟ้าบางอย่าง ซึ่งนำไปสู่การปรับแก้ทฤษฎีความเชื่อให้สอดคล้องกับสิ่งที่พบเห็นในธรรมชาติ
1. กล้องโทรทรรศน์ชนิดสะท้อนแสง (Reflect telescope)
หลักการของกล้องโทรทัศน์ชนิดสะท้อนแสง
กล้องจะรับแสงที่เข้ามากระทบกับกระจกเว้าที่อยู่ท้ายกล้องที่เราเรียกว่า Primary Mirror แล้วรวมแสง สะท้อนกับกระจกระนาบหรือ ปริซึม เราเรียกว่า Secondary Mirror ที่อยู่กลางลำกล้อง เข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง

อัตราขยายของกล้อง = ความยาวโฟกัสของกระจกเว้า / ความโฟกัสของเลนซ์ตา
โครงสร้างภายในของกล้องแบบนิวโทเนียน หรือ กล้องแบบสะท้อนแสง
ข้อดีของกล้องชนิดนี้
1. ใช้กระจกเว้าเป็นตัวรวมแสง ทำให้สามารถสร้างขนาดใหญ่มากๆได้ ซึ่งจะมีราคาถูกกว่าเลนซ์ที่มีขนาดเท่ากัน
2. โดยทั้วไปกล้องชนิดนี้จะมีเส้นผ่านศูนย์กลาง 5-6 นิ้วขึ้นไป ทำให้มีการรวมแสงได้มากเหมาะที่จะใช้สังเกตวัตถุระยะไกลๆ เช่น กาแลกซี เนบิวล่า เพราะมีความเข้มแสงน้อยมาก
3. ภาพที่ได้จากกล้องแบบสะท้อนแสง จะไม่กลับภาพซ้ายขวาเหมือนกล้องแบบหักเหแสง แต่การมองภาพอาจจะ หัวกลับบ้าง ขึ้นอยู่กับลักษณะการมองจากกล้องเพราะเป็นการมองที่หัวกล้อง ไม่ใช่ที่ท้ายกล้อง เหมือนกล้องแบบหักเหแสง
ข้อเสียของกล้องชนิดนี้
1. การสร้างนั้นยุ่งยากซับซ้อนมาก
2. มีกระจกบานที่สองสะท้อนภาพอยู่กลางลำกล้อง ทำให้กีดขวางทางเดินของแสง หากเส้นผ่านศูนย์กลาง กล้องเล็กมากๆ ดังนั้นกล้องแบบสะท้อนแสงนี้จะมักมีขนาดใหญ่ ตั้งแต่ 4.5 นิ้วขึ้นไป

2. กล้องโทรทรรศน์ชนิดหักเหแสง (Refract telescope)
เป็นอุปกรณ์ที่สามารถขยายวัตถุที่อยู่ในระยะไกล กาลิเลโอ เป็นบุคคลแรกที่ประดิษฐกล้องชนิดนี้ขึ้น ประกอบด้วยเลนซ์นูนอย่างน้อยสองชิ้น คือ เลนซ์วัตถุ (Object Lens)เป็นเลนซ์ด้านรับแสงจากวัตถุ ซึ่งจะมีความยาวโฟกัสยาว (Fo) และเลนซ์ตา (Eyepieces) เป็นเลนซ์ที่ติดตาเราเวลามอง ซึ่งมีความยาวโฟกัสสั้น (Fe) กว่าเลนซ์วัตถุมากๆ
อัตราการขยายของกล้อง = ความยาวโฟกัสเลนซ์วัตถุ Fo /ความยาวโฟกัสเลนซ์ตา Fe

หลักการของกล้องโทรทัศน์ชนิดหักเหแสง
เลนซ์วัตถุจะรับแสงจากวัตถุที่ระยะไกลๆแล้วจะเกิดภาพที่ตำแหน่งโฟกัส(Fo) เสมอ แล้ว เลนซ์ตัวที่สอง หรือ เลนซ์ตา (Fe) จะขยายภาพจากเลนซ์วัตถุอีกครั้ง ซึ่งต้องปรับระยะของเลนซ์ตา เพื่อให้ภาพจากเลนซ์วัตถุที่ตำแหน่ง Fo อยู่ใกล้กับ โฟกัสของเลนซ์ตา Fe และทำให้เกิดภาพชัดที่สุด
โครงสร้างภายในของกล้องแบบหักเหแสง ที่เลนซ์วัตถุมักจะให้เลนซ์สองแบบที่ทำมาจากวัสดุคนละประเภท เพื่อลดอาการคลาดสี
ข้อดีของกล้องแบบหักเหแสง
1. เป็นกล้องพื้นฐานที่สร้างได้ไม่ยากนัก
2. โดยทั่วไปจะมีเส้นผ่านศูนย์กลางน้อยๆจึงมีน้ำหนักเบา
ข้อเสียของกล้องแบบหักเหแสง
1. เนื่องจากมีเส้นผ่านศูนย์กลางน้อย ทำให้ปริมาณการรับแสงน้อยไม่เหมาะใช้ดูวัตถุไกลๆอย่าง กาแลกซีและเนบิวล่า
2. ใช้เลนซ์เป็นตัวหักเหแสง ทำให้เกิดการคลาดสีได้หากใช้เลนซ์คุณภาพไม่ดีพอ จึงต้องมีการใช้เลนซ์ หลายชิ้นประกอบกันทำให้มีราคาสูง
3. ภาพที่ได้จากกล้องแบบหักเหแสงจะให้ภาพหัวกลับและกลับซ้ายขวา คืออ่านตัวหนังสือไม่ได้นั่นเอง ดังนั้นกล้องแบบนี้จะต้องมี diagonal prism เพื่อช่วยแก้ไขภาพ
ประวัติการส่งยานอวกาศ
- พ. ศ. 1775 ชาวจีนใช้จรวดขับดันลูกธนูเป็นอาวุธ
- ประเทศไทยเล่นบั้งไฟในงานบุญ ( ไม่ได้บันทึกปี)
- พ. ศ. 2446 ไซออล คอฟสกี (Tsiokovski) ชาวรัสเซียได้รับการยกย่องว่าเป็นผู้บุกเบิกความคิดในการเกิดทางระหว่างดาว ซึ่งต้องเดินทางผ่านห้วงอากาศ
- พ. ศ. 2469 โรเบิร์ต กอดดาร์ด (Robert Goddard) ชาวอเมริกันประสบความสำเร็จในการใช้จรวดเชื้อเพลิงเหลว




การส่งดาวเทียมและยานอวกาศขึ้นสู่อวกาศจะต้องอาศัยเทคโนโลยีจรวดเพื่อเอาชนะแรงดึงดูดของโลก ต่อมามีการพัฒนาระบบการขนส่งอวกาศซึ่งประกอบด้วย จรวดเชื้อเพลิงแข็ง ถังเชื้อเพลิงภายนอก และยานขนส่งอวกาศ ทำให้การส่งดาวเทียมและยานอวกาศมีประสิทธิภาพมากขึ้น สามารถนำชิ้นส่วนบางอย่างที่ใช้แล้วนำกลับมาใช้ใหม่ ตลอดจนการแก้ปัญหาเพื่อให้มนุษย์สามารถดำรงชีวิตอยู่ได้ในยานอวกาศด้วยการออกกำลังกาย




ความรู้วิทยาศาสตร์พื้นฐานกับการพัฒนาเทคโนโลยีอวกาศ
- การส่งและควบคุมติดตามดาวเทียมและยานอวกาศอาศัยจรวดที่มีแรงขับดันจากเชื้อเพลิงเป็นหลัก ซึ่งเป็นไปตามกฎการเคลื่อนที่ข้อที่ 3 ของนิวตัน แรงกิริยาที่แก๊สร้อนถูกขับออกมาจากการเผาไหม้ เท่ากับแรงปฏิกิริยาที่กระทำต่อจรวด ส่งผลให้จรวดเคลื่อนที่ในทิศตรงข้าม ดังนั้นแรงดันของจรวดจะแปรตามความเร็วของแก๊สที่ถูกขับออกมาจากจรวด
- การพบอัตราส่วนที่เหมาะสมของเชื้อเพลิงกับสารที่ให้ออกซิเจน ซึ่งรวมกันเป็นสารขับดัน เช่น อัตราส่วนของสารขับดันที่ประกอบด้วยไฮโดรเจนเหลว ( เชื้อเพลิง) กับออกซิเจนเหลว เป็น 1 : 1.5 โดยน้ำหนัก เป็นต้น
- ความรู้เกี่ยวกับความเร็วในวงโคจรของยานอวกาศที่ระดับความสูงต่าง ๆ โดยที่ยานอวกาศไม่ตกลงมาสู่พื้นโลก เช่น ที่ความสูง 160 กิโลเมตร ยานอวกาศต้องโคจรด้วยความเร็วประมาณ 7.8 กิโลเมตรต่อวินาที
- ความรู้เกี่ยวกับการผลิตพลังงานไฟฟ้าในอวกาศ ซึ่งอาจผลิตได้จากแหล่งต่อไปนี้
- เซลล์สุริยะ (solar cells)
- เซลล์เชื้อเพลิง (fuel cells)
- เครื่องปฏิกรณ์นิวเคลียร์
จากความรู้และการพัฒนาเทคโนโลยีอวกาศก่อให้เกิดประโยชน์ต่อมนุษย์ในด้านต่าง ๆ เช่น การพยากรณ์อากาศ โดยอาศัยข้อมูลจากดาวเทียมอุตุนิยมวิทยา การสำรวจทรัพยากรของโลกจากดาวเทียมสำรวจทรัพยากร การสื่อสารโทรคมนาคมจากดาวเทียมสื่อสาร และการสังเกตการณ์ดาราศาสตร์จากดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์ และกล้องโทรทรรศน์อวกาศฮับเบิล


ผลของความก้าวหน้าด้านอวกาศ
จากการสำรวจอวกาศทำให้เกิดความรู้ทางวิทยาศาสตร์เพิ่มขึ้นเป็นอย่างมาก ทั้งความรู้เกี่ยวกับโลก อวกาศในห้วงลึก และการพัฒนาเทคโนโลยีที่จำเป็นต่อโครงการอวกาศ เป็นผลให้มนุษย์ได้รับประโยชน์จากความรู้ดังกล่าว ได้แก่
- ความก้าวหน้าของระบบโทรคมนาคม
- การใช้ดาวเทียมสำรวจทรัพยากรธรรมชาติ
- ความก้าวหน้าทางวิทยาศาสตร์และเทคโนโลยีด้วยเครื่องมือวัด เครื่องมือตรวจจับ วัสดุศาสตร์ และเทคโนโลยีพลังงาน
- การเพิ่มพูนความรู้ในเชิงลึกและกว้างทางดาราศาสตร์

ที่มา http://www.anek2009.ob.tc/anek043/linkedfile.html

มาลองทำแบบฝึกหัดกันจ้ะ
แบบฝึกหัดบทที่ 8

เนื้อหาบทที่7 เรื่อง ดาวฤกษ์




ระบบสุริยะ คือระบบดาวที่มีดาวฤกษ์เป็นศูนย์กลาง และมีดาวเคราะห์ (Planet) เป็นบริวารโคจรอยู่โดยรอบ เมื่อสภาพแวดล้อมเอื้ออำนวย ต่อการดำรงชีวิต สิ่งมีชีวิตก็จะเกิดขึ้นบนดาวเคราะห์เหล่านั้น หรือ บริวารของดาวเคราะห์เองที่เรียกว่าดวงจันทร์ (Satellite) นักดาราศาสตร์เชื่อว่า ในบรรดาดาวฤกษ์ทั้งหมดกว่าแสนล้านดวงในกาแลกซี่ทางช้างเผือก ต้องมีระบบสุริยะที่เอื้ออำนวยชีวิตอย่าง ระบบสุริยะที่โลกของเราเป็นบริวารอยู่อย่างแน่นอน เพียงแต่ว่าระยะทางไกลมากเกินกว่าความสามารถในการติดต่อจะทำได้ถึง      ที่โลกของเราอยู่เป็นระบบที่ประกอบด้วย ดวงอาทิตย์ (The sun) เป็นศูนย์กลาง มีดาวเคราะห์ (Planets) 9 ดวง ที่เราเรียกกันว่า ดาวนพเคราะห์ ( นพ แปลว่า เก้า) เรียงตามลำดับ จากในสุดคือ ดาวพุธ ดาวศุกร์ โลก ดาวอังคาร ดาวพฤหัส ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน ดาวพลูโต
และยังมีดวงจันทร์บริวารของ ดวงเคราะห์แต่ละดวง (Moon of sattelites) ยกเว้นเพียง สองดวงคือ ดาวพุธ และ ดาวศุกร์ ที่ไม่มีบริวาร ดาวเคราะห์น้อย (Minor planets) ดาวหาง (Comets) อุกกาบาต (Meteorites) ตลอดจนกลุ่มฝุ่นและก๊าซ ซึ่งเคลื่อนที่อยู่ในวงโคจร ภายใต้อิทธิพลแรงดึงดูด จากดวงอาทิตย์ ขนาดของระบบสุริยะ กว้างใหญ่ไพศาลมาก เมื่อเทียบระยะทาง ระหว่างโลกกับดวงอาทิตย์ ซึ่งมีระยะทางประมาณ 150 ล้านกิโลเมตร หรือ 1au.(astronomy unit) หน่วยดาราศาสตร์ กล่าวคือ ระบบสุริยะมีระยะทางไกลไปจนถึงวงโคจร ของดาวพลูโต ดาว เคราะห์ที่มีขนาดเล็กที่สุด ในระบบสุริยะ ซึ่งอยู่ไกล เป็นระยะทาง 40 เท่าของ 1 หน่วยดาราศาสตร์ และยังไกลห่างออก ไปอีกจนถึงดงดาวหางอ๊อต (Oort's Cloud) ซึ่งอาจอยู่ไกลถึง 500,000 เท่า ของระยะทางจากโลกถึงดวงอาทิตย์ด้วย ดวงอาทิตย์มีมวล มากกว่าร้อยละ 99 ของ มวลทั้งหมดในระบบสุริยะ ที่เหลือนอกนั้นจะเป็นมวลของ เทหวัตถุต่างๆ ซึ่ง ประกอบด้วยดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และอุกกาบาต รวมไปถึงฝุ่นและก๊าซ ที่ล่องลอยระหว่าง ดาวเคราะห์ แต่ละดวง โดยมีแรงดึงดูด (Gravity) เป็นแรงควบคุมระบบสุริยะ ให้เทหวัตถุบนฟ้าทั้งหมด เคลื่อนที่เป็นไปตามกฏแรง แรงโน้มถ่วงของนิวตัน ดวงอาทิตย์แพร่พลังงาน ออกมา ด้วยอัตราประมาณ 90,000,000,000,000,000,000,000,000 แคลอรีต่อวินาที เป็นพลังงานที่เกิดจากปฏิกริยาเทอร์โมนิวเคลียร์ โดยการเปลี่ยนไฮโดรเจนเป็นฮีเลียม ซึ่งเป็นแหล่งความร้อนให้กับดาว ดาวเคราะห์ต่างๆ ถึงแม้ว่าดวงอาทิตย์ จะเสียไฮโดรเจนไปถึง 4,000,000 ตันต่อวินาทีก็ตาม แต่นักวิทยาศาสตร์ก็ยังมีความเชื่อว่าดวงอาทิตย์ จะยังคงแพร่พลังงานออกมา ในอัตรา ที่เท่ากันนี้ได้อีกนานหลายพันล้านปี      ชื่อของดาวเคราะห์ทั้ง 9 ดวงยกเว้นโลก ถูกตั้งชื่อตามเทพของชาวกรีก เพราะเชื่อว่าเทพเหล่านั้นอยู่บนสรวงสวรค์ และเคารพบูชาแต่โบราณกาล ในสมัยโบราณจะรู้จักดาวเคราะห์เพียง 5 ดวงเท่านั้น(ไม่นับโลกของเรา) เพราะสามารถเห็นได้ ด้วยตาเปล่าคือ ดาวพุธ ดาวศุกร์ ดาวอังคาร ดาวพฤหัส ดาวเสาร์ ประกอบกับดวงอาทิตย์ และดวงจันทร์ รวมเป็น 7 ทำให้เกิดวันทั้ง 7 ในสัปดาห์นั่นเอง และดาวทั้ง 7 นี้จึงมีอิทธิกับดวงชะตาชีวิตของคนเราตามความเชื่อถือทางโหราศาสตร์ ส่วนดาวเคราะห์อีก 3 ดวงคือ ดาวยูเรนัส ดาวเนปจูน ดาวพลูโต ถูกคนพบภายหลัง แต่นักดาราศาสตร์ก็ตั้งชื่อตามเทพของกรีก เพื่อให้สอดคล้องกันนั่นเอง


ทฤษฎีการกำเนิดของระบบสุริยะ

     หลักฐานที่สำคัญของการกำเนิดของระบบสุริยะก็คือ การเรียงตัว และการเคลื่อนที่อย่างเป็นระบบระเบียบของดาว เคราะห์ ดวงจันทร์บริวาร ของดาวเคราะห์ และดาวเคราะห์น้อย ที่แสดงให้เห็นว่าเทหวัตถุ ทั้งมวลบนฟ้า นั้นเป็นของ ระบบสุริยะ ซึ่งจะเป็นเรื่องที่เป็นไปไม่ได้เลย ที่เทหวัตถุท้องฟ้า หลายพันดวง จะมีระบบ โดยบังเอิญโดยมิได้มีจุดกำเนิด ร่วมกัน Piere Simon Laplace ได้เสนอทฤษฎีจุดกำเนิดของระบบสุริยะ ไว้เมื่อปี ค.ศ.1796 กล่าวว่า ในระบบสุริยะจะ มีมวลของก๊าซรูปร่างเป็นจานแบนๆ ขนาดมหึมาหมุนรอบ ตัวเองอยู่ ในขณะที่หมุนรอบตัวเองนั้นจะเกิดการหดตัวลง เพราะแรงดึงดูดของมวลก๊าซ ซึ่งจะทำให้ อัตราการหมุนรอบตัวเองนั้น จะเกิดการหดตัวลงเพราะแรงดึงดูดของก๊าซ ซึ่งจะทำให้อัตราการ หมุนรอบตังเอง มีความเร็วสูงขึ้นเพื่อรักษาโมเมนตัมเชิงมุม (Angular Momentum) ในที่สุด เมื่อความเร็ว มีอัตราสูงขึ้น จนกระทั่งแรงหนีศูนย์กลางที่ขอบของกลุ่มก๊าซมีมากกว่าแรงดึงดูด ก็จะทำให้เกิดมีวงแหวน ของกลุ่มก๊าซแยก ตัวออกไปจากศุนย์กลางของกลุ่มก๊าซเดิม และเมื่อเกิดการหดตัวอีกก็จะมีวงแหวนของกลุ่มก๊าซเพิ่มขึ้น ขึ้นต่อไปเรื่อยๆ วงแหวนที่แยกตัวไปจากศูนย์กลางของวงแหวนแต่ละวงจะมีความกว้างไม่เท่ากัน ตรงบริเวณ ที่มีความ หนาแน่นมากที่สุดของวง จะคอยดึงวัตถุทั้งหมดในวงแหวน มารวมกันแล้วกลั่นตัว เป็นดาวเคราะห์ ดวงจันทร์ของดาว ดาวเคราะห์จะเกิดขึ้นจากการหดตัวของดาวเคราะห์ สำหรับดาวหาง และสะเก็ดดาวนั้น เกิดขึ้นจากเศษหลงเหลือระหว่าง การเกิดของดาวเคราะห์ดวงต่างๆ ดังนั้น ดวงอาทิตย์ในปัจจุบันก็คือ มวลก๊าซ ดั้งเดิมที่ทำให้เกิดระบบสุริยะขึ้นมานั่นเอง นอกจากนี้ยังมีอีกหลายทฤษฎีที่มีความเชื่อในการเกิดระบบสุริยะ แต่ในที่สุดก็มีความเห็นคล้ายๆ กับแนวทฤษฎีของ Laplace ตัวอย่างเช่น ทฤษฎีของ Coral Von Weizsacker นักดาราศาสตร์ฟิสิกส์ชาวเยอรมัน ซึ่งกล่าวว่า มีวง กลมของกลุ่มก๊าซและฝุ่นละอองหรือเนบิวลา ต้นกำเนิดดวงอาทิตย์ (Solar Nebular) ห้อมล้อมอยู่รอบดวงอาทิตย์ ขณะที่ดวงอาทิตย์เกิดใหม่ๆ และ ละอองสสารในกลุ่มก๊าซ เกิดการกระแทกซึ่งกันและกัน แล้วกลายเป็นกลุ่มก้อนสสาร ขนาดใหญ่ จนกลายเป็น เทหวัตถุแข็ง เกิดขั้นในวงโคจรของดวงอาทิตย์ ซึ่งเราเรียกว่า ดาวเคราะห์ และดวงจันทร์ของ ดาวเคราะห์นั่นเอ
ระบบสุริยะของเรามีขนาดใหญ่โตมากเมื่อเทียบกับโลกที่เราอาศัยอยู่ แต่มีขนาดเล็กเมื่อเทียบกับกาแล็กซีของเราหรือ กาแล็กซีทางช้างเผือก ระบบสุริยะตั้งอยู่ในบริเวณ วงแขนของกาแล็กซีทางช้างเผือก (Milky Way) ซึ่งเปรียบเสมือนวง ล้อยักษ์ที่หมุนอยู่ในอวกาศ โดยระบบสุริยะ จะอยู่ห่างจาก จุดศูนย์กลางของกาแล็กซีทางช้างเผือกประมาณ 30,000 ปีแสง ดวงอาทิตย์ จะใช้เวลาประมาณ 225 ล้านปี ในการเคลื่อน ครบรอบจุดศูนย์กลาง ของกาแล็กซี ทางช้างเผือกครบ 1 รอบ นักดาราศาสตร์จึงมี ความเห็นร่วมกันว่า เทหวัตถุทั้ง มวลในระบบสุริยะไม่ว่าจะเป็นดาวเคราะห์ทุกดวง ดวงจันทร์ของ ดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และอุกกาบาต เกิดขึ้นมาพร้อมๆกัน มีอายุเท่ากันตามทฤษฎีจุดกำเนิดของระบบ สุริยะ และจาการนำ เอาหิน จากดวงจันทร์มา วิเคราะห์การสลายตัว ของสารกัมมันตภาพรังสี ทำให้ทราบว่าดวงจันทร์มี อายุประมาณ 4,600 ล้านปี ในขณะเดียวกัน นักธรณีวิทยาก็ได้คำนวณ หาอายุของหินบนผิวโลก จากการสลายตัว ของอตอม อะตอมยูเรเนียม และสารไอโซโทป ของธาตุตะกั่ว ทำให้นักวิทยาศาสตร์เชื่อว่า โลก ดวงจันทร์ อุกกาบาต มีอายุประมาณ 4,600 ล้านปี และอายุของ ระบบสุริยะ นับตั้งแต่เริ่มเกิดจากฝุ่นละอองก๊าซ ในอวกาศ จึงมีอายุไม่เกิน 5000 ล้านปี ในบรรดาสมาชิกของระบบสุริยะซึ่งประกอบด้วย ดวงอาทิตย์ ดาวเคราะห์ ดาวเคราะห์น้อย ดวงจันทร์ ของดาวเคราะห์ดาวหาง อุกกาบาต สะเก็ดดาว รวมทั้งฝุ่นละองก๊าซ อีกมากมาย นั้นดวงอาทิตย์และดาวเคราะห์ 9 ดวง จะได้รับความสนใจมากที่สุดจากนักดาราศาสตร์

ดาวเคราะห์ (Planets)
     ดาวเคราะห์ หมายถึง ดาวที่ไม่มีแสงสว่างในตัวเอง แต่สะท้อนแสงอาทิตย์ส่องเข้าไปตาเรา ดาวเคราะห์ แต่ละดวง มีขนาดและจำนวนดวงจันทร์บริวารไม่เท่ากัน อยู่ห่างจากดวงอาทิตย์เป็น ระยะทางต่างกัน และดวง ต่างก็อยู่ในระบบสุริยะ โดยหมุนรอบตัวเองโคจรรอบ ดวงอาทิตย์ด้วย ความเร็วต่างกันไป จากการศึกษา เรื่องราว เกี่ยวกับดาวเคราะห์โดยใช้โลกเป็นหลักในการแบ่ง
     ดาวเคราะห์ เป็นดาวที่ไม่มีแสงในตัวเอง ไม่เหมือนกับดวงอาทิตย์ หรือดาวฤกษ์ ซึ่งสามารถส่องสว่างด้วยตนเองได้ แต่เราสามารถมองเห็นดาวเคราะห์ได้ เนื่องจากการที่ดาวเคราะห์ สะท้อนแสงจากดวงอาทิตย์ เข้าสู่ตาของเรานั่นเองแม้ดาวเคราะห์ในระบบสุริยะจักรวาลของเรา จะมีถึง 8 ดวง (ไม่รวมโลก) แต่เราสามารถมองเห็นได้ ด้วยตาเปล่า เพียง 5 ดวงเท่านั้น คือ ดาวพุธ, ดาวศุกร์, ดาวอังคาร, ดาวพฤหัส และดาวเสาร์ เท่านั้น ซึ่งชาวโบราณเรียก ดาวเคราะห์ทั้งห้านี้ว่า "The Wandering Stars" หรือ "Planetes" ในภาษากรีก และเรียกดวงอาทิตย์ และดวงจันทร์ ทั้งสองดวงว่า "The Two Great Lights" ซึ่งเมื่อรวมกันทั้งหมด 7 ดวง จะเป็นที่มาของชื่อวัน ใน 1 สัปดาห์ นั่นเอง

ดาวเคราะห์ทั้ง 9 สามารถแบ่งออกเป็นกลุ่มๆ ได้ดังนี้
1. แบ่งตามลักษณะทางกายภาพ

- ดาวเคราะห์ชั้นใน (Inner or Terrestrial Planets): จะเป็นกลุ่มดาวเคราะห์ ที่อยู่ใกล้ดวงอาทิตย์มากกว่าอีกกลุ่ม เป็นดาวเคราะห์ที่เย็นตัวแล้วมากกว่า ทำให้มีผิวนอกเป็นของแข็ง เหมือนผิวโลกของเรา จึงเรียกว่า Terrestrial Planets   
(หมายถึง "บนพื้นโลก") ได้แก่ ดาวพุธ (Mercury), ดาวศุกร์(Venus), โลก (Earth) และดาวอังคาร (Mars) ซึ่งจะใช้แถบของ ดาวเคราะห์น้อย (Asteroid Belt) เป็นแนวแบ่ง





 -ดาวเคราะชั้นนอก (Outer or Jovian Planets): จะเป็ดาวเคราะห์นกลุ่มดาวเคราะห์ ที่อยู่ไกลดวงอาทิตย์มากกว่าอีกกลุ่ม เป็นดาวเคราะห์ที่เพิ่งเย็นตัว ทำให้มีผิวนอก ปกคลุมด้วยก๊าซ เป็นส่วนใหญ่ เหมือนพื้นผิวของดาวพฤหัส ทำให้มีชื่อเรียกว่า Jovian Planets (Jovian มาจากคำว่า Jupiter-like หมายถึง คล้ายดาวพฤหัส) ได้แก่ ดาวพฤหัส (Jupiter), ดาวเสาร์ (Saturn), ดาวยูเรนัส (Uranus), ดาวเนปจูน (Neptune) และดาวพลูโต (Pluto)

2. แบ่งตามวงทางโคจรดังนี้ คือ
     - ดาวเคราะห์วงใน (Interior planets) หมายถึงดาวเคราะห์ที่อยู่ใกล้ดวงอาทิตย์มากกว่าโลก ได้แก่ดาวพุธ และดาวศุกร์
     - ดาวเคราะห์วงนอก (Superior planets) หมายถึง ดาวเคราะห์ที่อยู่ถัดจากโลกออกไป ได้แก่ ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน และดาวพลูโต

3. แบ่งตามลักษณะพื้นผิว ดังนี้
     - ดาวเคราะห์ก้อนหินได้แก่ ดาวพุธ ดาวศุกร์ โลก และดาวอังคาร ทั้ง 4 ดวงนี้มีพื้นผิวแข็งเป็นหิน มีชั้นบรรยากาศบางๆ ห่อหุ้ม ยกว้นดาวพุธที่อยู่ใกล้ดวงอาทิตย์ที่สุดไม่มีบรรยากาศ
     - ดาวเคราะห์ก๊าซ ได้แก่ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน จะเป็นก๊าซทั่วทั้งดวง อาจมีแกนหินขนาดเล็ก อยู่ภายใน พื้นผิวจึงเป็นบรรยากาศที่ปกคลุมด้วยก๊าซมีเทน แอมโมเนีย ไฮโดรเจน และฮีเลียม
(สำหรับดาวพลูโตนั้นยังสรุปไม่ได้ว่าเป็นพวกใด เนื่องจากยังอยู่ห่างไกลจากโลกมาก)


      นอกจากที่เราทราบว่า ดาวเคราะห์จะหมุนรอบตัวเอง โคจรไปรอบๆดวงอาทติย์แล้ว แกนของแต่ละดาวเคราะห์ ยังเอียง (จากแนวตั้งฉากของการเคลื่อนที่) ไม่เท่ากันอีกด้วย นอกจากนี้ เมื่อเทียบทิศทางของ การหมุนรอบตัวเอง กับการหมุนรอบดวงอาทิตย์ ของแต่ละดาวเคราะห์ พบว่า ดาวศุกร์ (Venus), ดาวยูเรนัส (Uranus), และดาวพลูโต (Pluto) จะหมุนรอบตัวเอง แตกต่างไปจากดาวเคราะห์ดวงอื่นๆ ในระบบสุริยะจักรวาลของเรา
                                            ภาพแสดงการหมุนของดาวเคราะห์แต่ละดวงภาพแสดงการหมุนของดาวเคราะห์แต่ละดวง


มาลองทำแบบฝึกหัดกันจ้ะ

เนื้อหาบทที่6 เรื่อง ดาวฤกษ์

ดาวฤกษ์ (stars)
ดาวฤกษ์เกิดจากการหดตัวของฝุ่นแก๊สระหว่างดวงดาว (interstellar dust) เมื่อกลุ่มแก๊สเหล่านี้หดตัวและสะสมมวลมากพอก็จะเกิดปฏิกิริยานิวเคลียร์ฟิวส์ชันกลายเป็นดาวฤกษ์ ดาวฤกษ์อยู่รวมกันเป็นกลุ่มในกาแล็กซี กาแล็กซีทั้งหมดอยู่ในเอกภพ  ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุดคือ ดวงอาทิตย์ ซึ่งอยู่ห่างเป็นระยะทางประมาณ 150,000,000 กิโลกเมตร นักดาราศาสตร์สามารถคำนวณมวล อายุ ส่วนประกอบของดาวฤกษ์ และสมบัติทางกายภาพอื่น ๆ ได้จาก สเปกตรัม ความส่องสว่าง (luminosity) และการเคลื่อนไหวของดาวฤกษ์นั้น ๆ ในการศึกษาสมบัติทางกายภาพของดาวฤกษ์ข้อมูลที่สำคัญอย่างแรกคือระยะห่างระหว่างดาวดวงนั้นกับดวงอาทิตย์ โดยหน่วยวัดระยะทางทางดาราศาสตร์แบ่งเป็นหน่วยต่าง ๆ ได้ดังนี้
1.    หน่วย AU (Astronomical unit) เหมาะสำหรับดาวฤกษ์ที่อยู่ไม่ไกลมากนัก โดย 1 AU =  1.496 x 108 กิโลเมตร
2.    หน่วยปีแสง (ly) เป็นระยะทางที่แสงเดินทางได้ใน 1 ปี1    ปีแสง    =    9.5  x 1012     กิโลเมตร
3.    หน่วย parsec (pc) คือระยะทางที่ทำให้ค่ามุม parallax ของดาวดวงนั้นมีค่าเท่ากับ 1
 ฟิลิปดา (คำว่า parsec มาจากคำว่า parallax second)     
1    pc    =    206,265 AU    =    3.08 x 1012 กิโลเมตร    =    3.26 ปีแสง

รูปแสดงระยะทาง 1 pc (not to scale)


                                                                               รูปที่ 1 แสดงการจำแนกดาวฤกษ์ตามสเปคตรัม


โชติมาตรโชติมาตรที่ 1โชติมาตรที่ 2โชติมาตรที่ 3โชติมาตรที่ 4โชติมาตรที่ 5โชติมาตรที่ 6
  ระดับความสว่าง
ที่สามารถมองเห็นได้
มองเห็นสว่าง ที่สุด  มองเห็นสว่าง
ค่อนข้างมาก
มองเห็นสว่าง ปานกลาง  มองเห็นสว่าง
พอใช้
  มองเห็นสว่าง
เล็กน้อย
แค่พอมองเห็น ได้ด้วยตาเปล่า




วิวัฒนาการของดาวฤกษ์ 

สิ่งที่สังเกตได้ง่ายของดาวฤกษ์คือความสว่างและสี เราสามารถจำแนกดาวตามสเปคตรัมซึ่งเรียกว่า “Draper classification” โดยใช้อักษรในการเรียกชื่อกลุ่ม เริ่มจากกลุ่มที่มีอุณหภูมิสูงไปยังอุณหภูมิต่ำ ได้แก่กลุ่ม O, B, A , F, G, K และ M และต่อมาพบว่าต้องมีการแบ่งกลุ่มละเอียดลงไปอีก จึงได้แบ่งแต่ละกลุ่มออกเป็น 10 กลุ่มย่อย โดยใช้ตัวเลขเพิ่มเข้าไป

             1.ฤกษ์เกิดมาโดยมีมวลไม่เท่ากัน โดยดาวเหล่านี้จะใช้ปฏิกิริยานิวเคลียร์แบบ p-p reaction และดาวเหล่านี้จะอยู่ในระยะ (stage) ของดาวบนแถบกระบวนหลัก (Main sequence)
                 2.    ดาวฤกษ์จะอยู่บนแถบกระบวนหลัก (Main sequence) เป็นเวลานานเพียงใดขึ้นอยู่กับมวลของดาวดวงนั้นเพราะความสุกสว่าง (Luminosity) ของดาวขึ้นอยู่กับมวลตามความสัมพันธ์
                               L      α    M3.5                      
ดังนั้น ดาวที่มีมวลมากจะวิวัฒนาการจากแถบกระบวนหลัก (Main sequence) ได้เร็ว
3.    ดาวฤกษ์ที่มีมวลมากจะวิวัฒนาการออกจากแถบกระบวนหลัก (Main sequence) ไปเป็นดาวยักษ์แดง (Red giant)
4.    วิวัฒนาการจากแถบกระบวนหลัก (Main sequence) --> ดาวยักษ์แดง (Red giant) เป็นไปอย่างรวดเร็วทำให้เกิด Hertzsprung gap ขึ้น
5.    วิวัฒนาการของดาวฤกษ์จากแถบกระบวนหลัก (Main sequence) สามารถแยกย่อยออกเป็นระยะ stage ต่างๆ ขึ้นอยู่กับมวลของดาวดวงนั้น
-    เข้าสู่ Subgiant branch of hydrogen shell burning (SGB)
-    เข้าสู่ Red Giant branch (RGB)
-    เข้าสู่ Helium core burning (HB)
-    เข้าสู่ Asymptotic giant branch during hydrogen and helium burning (AGB)
-    และ post-AGB วิวัฒนาการไปเป็น White dwarf (P-AGB)



มาลองทำแบบฝึกหัดกันจ้ะ

เนื้อหาบทที่5 เรื่อง เอกภพ

 โลกเป็นดาวเคราะห์ดวงหนึ่งในระบบสุริยะที่มีดวงอาทิตย์เป็นศูนย์กลาง ระบบสุริยะเป็นสมาชิกส่วนหนึ่งในอาณาจักรแห่งดวงดาว หรือการแลกซีทางช้างเผือก ซึ่งมีสมาชิกดาวฤกษ์ประมาณสองแสนล้านดวง และกาแล็กซีทางช้างเผือกเป็นสมาชิก แห่งหนึ่ง ในเอกภพ ซึ่งประกอบด้วยกาแล็กซีมากมายกว่าหมื่นล้านแห่ง มนุษย์จึงเปรียบประดุจผงธุลีในเอกภพอันกว้างใหญ่ไพศาล โลกอยู่ที่ใดในเอกภพ เพื่อแสดงให้เห็นว่ามนุษย์เปรียบดังผงธุลีในจักรวาล เมื่อพิจารณาจากโลกสู่อาณาจักรกว้างใหญ่ ของกาแล็กซีและของเอกภพ
กำเนิดเอกภพ
ทฤษฎีกำเนิดเอกภพ ที่ได้รับความเชื่อถือมาก ในหมู่นักดาราศาสตร์ คือ ทฤษฎีระเบิดใหญ่ หรือ Big Bang เป็นการระเบิดครั้งยิ่งใหญ่จากพลังงานบางอย่าง สาดกระจายมวลสารทั้งหลาย ออกไปทุกทิศทาง แล้วเริ่มเย็นตัวลงจับกลุ่มเป็น ก้อนก๊าซ ขนาดใหญ่ จนยุบตัวลงเป็น กาแล็กซีและดาวฤกษ์ ได้ก่อรูปขึ้นมาใน กาแล็กซีเหล่านั้นประมาณหนึ่งหมื่นล้านปี หลังจากการระเบิดใหญ่ ที่เกลียวของของ กาแล็กซีทางช้างเผือก ดวงอาทิตย์ โลก และดาวเคราะห์ดวงอื่น ได้ถือกำเนิดขึ้นเป็นระบบสุริยะ

เราอาจกล่าวได้ว่าการศึกษาเอกภพปัจจุบันนั้นมีต้นกำเนิดรากฐานมาจาก ทฤษฎีสัมพัทธภาพ ของ ไอน์สไตน์ ไอน์สไตน์เป็นผู้ที่ทำให้เกิดการศึกษาเกี่ยวกับเอกภพนั้นเป็นวิทยาศาสตร์ แทนที่จะเป็นเพียงความเชื่อหรือศาสนา ซึ่งก่อนหน้านั้นเรามักจะคิดเพียงว่าเอกภพเป็นสถานที่ให้ดาวและกาแลกซี่อยู่ ไม่ได้เป็นจุดสำคัญของการศึกษาค้นคว้า ในปี 1917 ไอน์สไตน์ได้ใช้ทฤษฎีสัมพัทธภาพในการศึกษาเกี่ยวกับเอกภพ ที่จริงในปี 1917 เป็นเพียงปีเดียวให้หลังจากที่เขาประกาศทฤษฎีสัมพัทธภาพทั่วไปของเขาเท่านั้น ซึ่งแสดงว่าเขาเริ่มสนใจการศึกษาเอกภพทันที่ที่ทฤษฎีของเขาเสร็จนั่นเอง เขาคงอยากรู้เกี่ยวกับเอกภพอย่างแรงกล้าอยู่แล้วและอาจกล่าวได้ว่า เพราะความอยากรู้เกี่ยวกับเอกภพจึงทำให้เขาสามารถค้นพบและสร้างทฤษฎีสัมพัทธภาพได้ ในตอนแรกๆ ไอน์สไตน์ได้ใช้ทฤษฎีของเขากับโมเดลเอกภพที่หยุดนิ่ง สม่ำเสมอ เหมือนกันทุกทิศทาง ซึ่งก็คือโมเดลของเอกภพปิด สม่ำเสมอและเหมือนกันทุกทิศทาง ซึ่งหมายความว่าถ้าดูในบริเวณแคบๆ ของเอกภพอาจจะมีโลก มีดาวเสาร์ ฯลฯ แต่เมื่อดูในวงกว้างขวางแล้ว ไม่ว่าจะมองไปทิศทางไหน เอกภพจะเหมือนกันทั้งหมด ไม่มีที่ไหนที่จะพิเศษกว่าที่อื่น ปัจจุบันเราเรียกความคิดนี้ว่า กฎของเอกภพ ซึ่งเป็นความคิดพื้นฐานอันหนึ่งในการศึกษาเอกภพในปัจจุบัน แล้วผลของการคำนวณปรากฏออกมาตรงกันข้ามกับที่คาดไว้ ไอน์สไตน์พบว่าตามโมเดลเอกภพที่ปิดนี้ เอกภพจะหดตัว แทนที่จะหยุดนิ่งอย่างที่คิดไว้ ซึ่งที่จริงแล้วนี่เป็นสิ่งที่พอคาดคะเนได้ เพราะทฤษฎีสัมพัทธภาพของไอน์สไตน์นั้น ที่จริงก็คือการขยายทฤษฎีแรงโน้มถ่วงของนิวตัน ถ้าในเอกภพมีมวลสารอยู่อย่างสม่ำเสมอ มันจะดึงดูดซึ่งกันและกันเข้าหากัน ซึ่งก็คือเอกภพจะหดตัวนั่นเอง
ทฤษฎีสภาวะคงที่
ทฤษฎีนี้ตั้งขึ้นจากนักวิทยาศาสตร์ ชาวอังกฤษ 3 คน ได แก เฟรด ฮอยด์ (Fred Hoyle) เฮอร์ แมน บอนได (Hermann Bondi) และโทมัส โกลด (Thomas Gold) เมื่อป พ.ศ. 2491 สรุปความว่า จักรวาลไม่มีจุดกําเนิดและไม่มีจุดจบ จักรวาลมีสภาพดังที่เป็นอยู ในปัจจุบันนานแล้ว และจะมี สภาพเช่นนี้ไปตลอดกาล

มาลองทำแบบฝึกหัดกันจ้ะ
แบบฝึกหัดบทที่ 5
ที่มา http://www.anek2009.ob.tc/earth_astro/eart9.htm

เนื้อหาบทที่4 เรื่อง ธรณีประวัติ

อายุทางธรณีวิทยา ซึ่งโดยทั่วไปมี 2 แบบ ถ้าเป็นการหาอายุที่ใช้วิธีเทียบเคียงจากการลำดับชั้นหิน ข้อมูลอายุทางธรณีวิทยาของซากดึกดำบรรพ์ที่พบในหินนั้น และลักษณะโครงสร้างทางธรณีวิทยาของชั้นหิน เรียกว่า อายุเปรียบเทียบ แต่ถ้าเป็นการหาอายุของชั้นหินหรือ ซากดึกดำบรรพ์โดยตรง โดยใช้วิธีคำนวณจากธาตุกัมมันตรังสีที่มีอยู่ในหิน เรียกว่า อายุสัมบูรณ์


อายุทางธรณีวิทยา เป็นอายุที่เกี่ยวกับการเกิดของโลก ทุกอย่างที่อยู่ใต้ผิวดินจะเกี่ยวข้องกับธรณีวิทยาทั้งสิ้น จึงต้องมีการให้อายุ เพื่อลำดับขั้นตอน เหตุการณ์ ว่าหิน แร่ ซากดึกดำบรรพ์ที่พบใต้ผิวโลก(จากการเจาะสำรวจ) หรือโผล่บนดินเกิดในช่วงใดเพื่อจะได้หาความสัมพันธ์ และเทียบเคียงกันได้ ถ้าไม่มีอายุ ก็คงจะยุ่งตายห่า ลองนึกภาพสมมุติตัวอย่างของคนซิครับ อายุทางธรณีวิทยาก็หาได้จากการเอาธาตุกัมมันตรังสี มาหาอายุ อีกแบบก็หาจากซากดึกดำบรรพ์ ว่าเป็นสกุลและชนิดใด โดยเปรียบเทียบกับรายงานวิชาการอื่นๆ ซึ่งศาสตร์นี้ต้องอาศัยการสั่งสมประสบการณ์และความเชี่ยวชาญสูง สำหรับหน่วยเราพูดกันเป็นล้านปีครับ น้อยๆ เราไม่ชอบ ต้องมีหน่วยเป็นหลักล้านครับ อายุทางธรณีวิทยานอกจากเป็นตัวเลขแล้ว ก็มีชื่อเรียกด้วย ซึ่งส่วนใหญ่ก็จะใช้ชื่อตามชื่อสถานที่ทางภูมิศาสตร์ที่มีการพบซากดึกดำบรรพ์ แบบสังเกตการบอกอายุของซากดึกดำบรรพ์หรืออายุหิน สามารถบอกได้ 2 แบบคือ การบอกอายุเชิงเปรียบเทียบ(Relative Age)และการบอกอายุสมบูรณ์(Absolute age)

อายุเปรียบเทียบ(Relative Age) คืออายุทางธรณีวิทยาของซากดึกดำบรรพ์ หิน ลักษณะทางธรณีวิทยา หรือเหตุการณ์ทางธรณีวิทยา เมื่อเปรียบเทียบกับซากดึกดำบรรพ์ หิน ลักษณะทางธรณีวิทยา หรือเหตุการณ์ทางธรณีวิทยาอื่น ๆแทนที่จะบ่งบอกเป็นจำนวนปี ดังนั้นการบอกอายุของหินแบบนี้จึงบอกได้แต่เพียงว่าอายุแก่กว่าหรืออ่อนกว่าหิน หรือซากดึกดำบรรพ์ อีกชุดหนึ่งเท่านั้น โดยอาศัยตำแหน่งการวางตัวของหินตะกอนเป็นตัวบ่งบอก( Index fossil) เป็นส่วนใหญ่ เพราะชั้นหินตะกอนแต่ละขั้นจะต้องใช้ระยะเวลาช่วงหนึ่งที่จะเกิดการทับถม เมื่อสามารถเรียงลำดับของหินตะกอนแต่ละชุดตามลำดับก็จะสามารถหาเวลาเปรียบเทียบได้ และจะต้องใช้หลักวิชาการทางธรณีวิทยา( Stratigraphy )ประกอบด้วย

การศึกษาเวลาเปรียบเทียบโดยอาศัยหลักความจริง มี อยู่ 3 ข้อคือ
1. กฎการวางตัวซ้อนกันของชั้นหินตะกอน(Law of superposition) ถ้าหินตะกอนชุดหนึ่งไม่ถูกพลิกกลับโดยปรากฏการณ์ทางธรรมชาติแล้ว ส่วนบนสุดของหินชุดนี้จะอายุอ่อนหรือน้อยที่สุด และส่วนล่างสุดจะมีอายุแก่หรือมากกว่าเสมอ
2. กฎของความสัมพันธ์ในการตัดผ่านชั้นหิน(Law of cross-cutting relationship ) หินที่ตัดผ่านเข้ามาในหินข้างเคียงจะมีอายุน้อยกว่าหินที่ถูกตัดเข้ามา
3. การเปรียบเทียบของหินตะกอน(correlation of sedimentary rock) ศึกษาเปรียบเทียบหินตะกอนในบริเวณที่ต่างกันโดยอาศัย
ก. ใช้ลักษณะทางกายภาพโดยอาศัยคีย์เบด(key bed) ซึ่งเป็นชั้นหินที่มีลักษณะเด่นเฉพาะตัวของมันเอง และถ้าพบที่ไหนจะต้องสามารถบ่งบอกจดจำได้อย่างถูกต้องถึงว่าชั้นหินที่วางตัวอยู่ข้างบนและข้างล่างของคีย์เบดจะมีลักษณะแตกต่างกันออกไปในแต่ละบริเวณด้วย
ข. เปรียบเทียบโดยใช้ซากดึกดำบรรพ์(correlation by fossil) มีหลักเกณฑ์คือ ในชั้นหินใด ๆถ้ามีซากดึกดำบรรพ์ที่เหมือนหรือคล้ายคลึงกันเกิดอยู่ในตัวของมันแล้ว ชั้นหินนั้น ๆย่อมมีอายุหรือช่วงระยะเวลาที่เกิดใกล้เคียงกับซากดึกดำบรรพ์ที่สามารถใช้เปรียบเทียบได้ดี เป็นช่วงระยะเวลาสั้น ๆ แต่เกิดอยู่กระจัดกระจายเป็นบริเวณกว้างขวางมากที่สุด ฟอสซิลเหล่านี้เรียกว่า ไกด์ฟอสซิลหรือ อินเด็กฟอสซิล(guide or index fossil)


อายุสัมบูรณ์( Absolute age ) หมายถึงอายุซากดึกดำบรรพ์ของหิน ลักษณะหรือเหตุการณ์ทางธรณีวิทยา(โดยมากวัดเป็นปี เช่น พันปี ล้านปี) โดยทั่วไปหมายถึงอายุที่คำนวณหาได้จากไอโซโทปของธาตุกัมมันตรังสี ขึ้นอยู่กับวิธีการและช่วงเวลาครึ่งชีวิต(Half life period) ของธาตุนั้น ๆ เช่น C-14 มีครึ่งชีวิตเท่ากับ 5,730 ปี จะใช้กับหินหรือ fossil โบราณคดี ที่มีอายุไม่เกิน 50,000 ปี ส่วน U-238 หรือ K-40 จะใช้หินที่มีอายุมาก ๆ ซึ่งมีวิธีการที่สลับซับซ้อน ใช้ทุนสูง และแร่ที่มีปริมาณรังสีมีปริมาณน้อยมาก วิธีการนี้เรียกว่า การตรวจหาอายุจากสารกัมมันตภาพรังสี(radiometric age dating)
การใช้ธาตุกัมมันตรังสีเพื่อหาอายุหิน หรือ ฟอสซิล นั้น ใช้หลักการสำคัญคือการเปรียบเทียบอัตราส่วนของธาตุกัมมันตรังสีที่เหลืออยู่( End product) ที่เกิดขึ้นกับไอโซโทปของธาตุกัมมันตรังสีตั้งต้น(Parent isotope)แล้วคำนวณโดยใช้เวลาครึ่งชีวิตมาช่วยด้วยก็จะได้อายุของชั้นหิน หรือ ซากดึกดำบรรพ์ นั้น ๆ เช่น
วิธีการ Uranium 238 - Lead 206 วิธีการ Uranium 235 - Lead 207
วิธีการ Potassium 40 - Argon 206 วิธีการ Rubidium 87- Strontium 87
วิธีการ Carbon 14 - Nitrogen 14
การหาอายุโดยใช้ธาตุกัมมันตรังสีมีประโยชน์ 2 ประการคือ
1. ช่วยในการกำหนดอายุที่แน่นอนหลังจากการใช้ fossil และ Stratigrapy แล้ว
2. ช่วยบอกอายุหรือเรื่องราวของยุคสมัย พรีแคมเบียน(Precambrian) นี้ถูกเปลี่ยนแปลง
อย่างต่อเนื่องไปอย่างมาก ร่องรอยต่าง ๆจึงสลายไปหมด

มาลองทำแบบฝึกหัดกันจ้ะ
แบบฝึกหัดบทที่ 4

ที่มา http://www.anek2009.ob.tc/anek043/linkedfile.html

เนื่อหาบทที่2 เรื่อง โลกและการเปลี่ยนแปลง

                                                                               แผ่นธรณีภาคและการเคลื่อนที่

                                            รูปแสดงขั้นตอนการเลื่อนของแผ่นธรณีภาคจากอดีตถึงปัจจุบัน
        
           ในปี พ.ศ. 2458 นักอุตุนิยมวิทยาชาวเยอรมันชื่อ ดร.อัลเฟรด เวเกเนอร์ (Dr. Alfred Wegener) ตั้งสมมุติฐานเกี่ยวกับการเลื่อนของแผ่นธรณีภาคจากอดีตถึงปัจจุบัน โดยกำหนดว่า เมื่อประมาณ 3002200 ล้านปีมาแล้ว ผืนแผ่นดินทั้งหมดบนโลกเป็นแผ่นดินผืนเดียวกันเรียกว่า พันเจีย (pangaea) ซึ่งเป็นภาษากรีก แปลว่า แผ่นดินทั้งหมด (all land) ต่อมาเกิดการเลื่อนตัวของแผ่นธรณีภาคเป็นขั้นตอน ดังนี้
1. เมื่อ 2002135 ล้านปี พันเจียเริ่มแยกออกเป็นทวีปใหญ่ 2 ทวีป คือ ลอเรเซียทางตอนเหนือ และกอนด์วานาทางตอนใต้ โดยกอนด์วานาจะแตกและเคลื่อนแยกจากกันเป็นอินเดีย อเมริกาใต้ และแอฟริกา ในขณะที่ออสเตรเลียยังคงเป็นส่วนหนึ่งของกอนด์วานา
2. เมื่อ 135265 ล้านปี มหาสมุทรแอตแลนติกแยกตัวกว้างขึ้น ทำให้แอฟริกาเคลื่อนที่ห่างออกไปจากอเมริกาใต้ แต่ออสเตรเลียยังคงเชื่อมอยู่กับแอนตาร์กติกา และอเมริกาเหนือกับยุโรปยังคงต่อเนื่องกัน
3. เมื่อ 65 ล้านปี2ปัจจุบัน มหาสมุทรแอตแลนติกขยายกว้างขึ้นอีก อเมริกาเหนือและยุโรปแยกจากกัน อเมริกาเหนือโค้งเว้าเข้าเชื่อมกับอเมริกาใต้ ออสเตรเลียแยกจากแอนตาร์กติกา และอินเดียเคลื่อนไป ชนกับเอเชียจนเกิดเป็นภูเขาหิมาลัย กลายเป็นแผ่นดินและผืนมหาสมุทรดังปัจจุบัน

หลักฐานและข้อมูลทางธรณีวิทยา
หลักฐานและข้อมูลต่างๆ ที่ทำให้นักวิทยาศาสตร์เชื่อในทฤษฎีการแปรสัณฐานแผ่นธรณีภาค ได้แก่
1. รอยต่อของแผ่นธรณีภาค
2. รอยแยกของแผ่นธรณีภาค และอายุของหินบนเทือกเขากลางมหาสมุทร
3. การค้นพบซากดึกดำบรรพ์
4. การเปลี่ยนแปลงของอากาศ
5. สนามแม่เหล็กโลกโบราณ

รอยต่อของแผ่นธรณีภาค
นักธรณีวิทยาแบ่งแผ่นธรณีภาคของโลกออกเป็น 2 ประเภท คือ แผ่นธรณีภาคภาคพื้นทวีป และแผ่นธรณีภาคใต้มหาสมุทร รวมทั้งหมด 12 แผ่น ได้แก่
1. แผ่นยูเรเชีย
2. แผ่นอเมริกาเหนือ
3. แผ่นอเมริกาใต้
4. แผ่นอินเดีย (แผ่นออสเตรเลีย2อินเดีย)
5. แผ่นแปซิฟิก
6. แผ่นนาสกา
7. แผ่นแอฟริกา
8. แผ่นอาระเบีย
9. แผ่นฟิลิปปินส์
10. แผ่นแอนตาร์กติกา
11. แผ่นคาริบเบีย
12. แผ่นคอคอส
    แต่ละแผ่นธรณีภาคจะมีการเคลื่อนที่ตลอดเวลา บางแผ่นเคลื่อนที่เข้าหากัน บางแผ่นเคลื่อนที่แยกออกจากกัน บางแผ่นเคลื่อนที่ผ่านกัน นอกจากนั้นยังมีรอยเลื่อนปรากฏบนแผ่นธรณีภาคบางแผ่น เช่น รอยเลื่อนซานแอนเดรียสบนแผ่นอเมริกาเหนือ รอยเลื่อนแอนาโทเลียบนแผ่นยูเรเชีย เป็นต้น
                                                                 รูปแสดงแผ่นธรณีภาคบริเวณต่างๆ ของโลก
   เมื่อพิจารณาแผนที่โลกปัจจุบันพบว่า ทวีปแต่ละทวีปมีรูปร่างต่างกัน แต่เมื่อนำแผ่นภาพของแต่ละทวีป มาต่อกันจะเห็นว่ามีส่วนที่สามารถต่อกันได้พอดี เช่น ขอบตะวันออกของทวีปอเมริกาใต้สามารถต่อกับขอบตะวันตก ของทวีปแอฟริกาใต้ได้อย่างพอดี เสมือนหนึ่งว่าทวีปทั้งสองน่าจะเป็นแผ่นดินเดียวกันมาก่อน ต่อมามีการเคลื่อนที่แยกออกจากกัน ส่วนหนึ่งเคลื่อนไปทางตะวันออก อีกส่วนหนึ่งเคลื่อนไปทางตะวันตก และมีมหาสมุทร แอตแลนติกเข้ามาแทนที่ตรงรอยแยก แผ่นทวีปทั้งสองมีการเคลื่อนแยกจากกันเรื่อยๆ จนมีตำแหน่งและรูปร่างดังปัจจุบัน
                                              รูปแสดงแนวขอบของทวีปต่างๆ ในปัจจุบันที่คิดว่าเคยต่อเชื่อมเป็นผืนเดียวกัน
       กระบวนการเปลี่ยนแปลงของเปลือกโลกเป็นผลทำให้แผ่นธรณีภาคเกิดการเคลื่อนที่แยกออกจากกันจนทำให้มีลักษณะดังปัจจุบัน
     รอยแยกของแผ่นธรณีภาคและอายุหินบนเทือกเขากลางมหาสมุทร
จากรูปแสดงเทือกเขากลางมหาสมุทรพบว่า ลักษณะเด่นของพื้นที่มหาสมุทรแอตแลนติก คือ
1. เทือกเขากลางมหาสมุทรซึ่งมีลักษณะเป็นเทือกเขายาวที่โค้งอ้อมไปตามรูปร่างของขอบทวีป ด้านหนึ่งเกือบขนานกับชายฝั่งของประเทศสหรัฐอเมริกา ส่วนอีกด้านหนึ่งขนานกับชายฝั่งของทวีปยุโรปและทวีปแอฟริกา
                                                                    รูปแสดงเทือกเขากลางมหาสมุทรแอตแลนติก

2. เทือกเขากลางมหาสมุทรมีรอยแยกตัวออกเป็นร่องลึกไปตลอดความยาวของเทือกเขา
3. มีรอยแตกตัดขวางบนสันเขากลางมหาสมุทรมากมาย รอยแตกเหล่านี้เป็นศูนย์กลางของการเกิดแผ่นดินไหวและภูเขาไฟระเบิด
4. มีเทือกเขาเล็กๆ กระจัดกระจายอยู่ทั้งทางตะวันออกและตะวันตกของพื้นมหาสมุทร บริเวณที่เป็นประเทศอังกฤษในปัจจุบัน เป็นเกาะที่อยู่บนไหล่ทวีปที่มีส่วนของแผ่นดินใต้พื้นน้ำต่อเนื่องกับทวีปยุโรป
ในปี พ.ศ. 2503 มีการสำรวจใต้ทะเลและมหาสมุทรใหญ่ทั้ง 3 แห่ง ด้วยเครื่องมือที่ทันสมัย ทำให้พบ หินบะซอลต์ที่บริเวณร่องลึก หรือรอยแยกบริเวณเทือกเขากลางมหาสมุทรแอตแลนติก และพบว่าหินบะซอลต์ที่อยู่ไกลจากรอยแยกจะมีอายุมากกว่าหินบะซอลต์ที่อยู่ใกล้รอยแยกหรือในรอยแยก จากหลักฐานดังกล่าวสามารถ อธิบายการเปลี่ยนแปลงได้ดังนี้ เมื่อเกิดรอยแยกแผ่นดินจะเกิดการเคลื่อนตัวออกจากกันอย่างช้าๆ ตลอดเวลา ขณะเดียวกันเนื้อของหินบะซอลต์จากส่วนล่างจะถูกดันแทรกเสริมขึ้นมาตรงรอยแยกเป็นเปลือกโลกใหม่ ทำให้ตรงกลางรอยแยกเกิดหินบะซอลต์ใหม่เรื่อยๆ โครงสร้างและอายุหินรองรับแผ่นธรณีภาคจึงมีอายุอ่อนสุดบริเวณ เทือกเขากลางมหาสมุทร และอายุมากขึ้นเมื่อเข้าใกล้ขอบทวีป ดังรูป
                                             รูปแสดงอายุของหินบะซอลต์บริเวณรอยแยกกลางมหาสมุทรแอตแลนติก

นักธรณีวิทยาได้ศึกษารอยต่อของแผ่นธรณีภาคพบว่า แผ่นธรณีภาคมีการเคลื่อนที่มีลักษณะต่างๆ ดังนี้
1. ขอบแผ่นธรณีภาคแยกออกจากกัน ขอบแผ่นธรณีภาคที่แยกจากกันนี้ เนื่องจากการดันตัวของแมกมาในชั้นธรณีภาค ทำให้เกิดรอยแตกในชั้นหินแข็ง แมกมาสามารถถ่ายโอนความร้อนสู่ชั้นเปลือกโลก อุณหภูมิและความดันของแมกมาลดลงเป็นผลให้เปลือกโลกตอนบนทรุดตัวกลายเป็นหุบเขาทรุด (rift valley)
                                                        รูปแสดงการแยกออกจากกันของแผ่นธรณีภาคภาคพื้นทวีป

ต่อมาน้ำทะเลไหลมาสะสมกลายเป็นทะเล และเกิดรอยแตกจนเป็นร่องลึก เมื่อแมกมาเคลื่อนตัวแทรกขึ้นมาตามรอยแตก เป็นผลให้แผ่นธรณีภาคใต้มหาสมุทรเคลื่อนตัวแยกออกไปทั้งสองข้าง ทำให้พื้นทะเลขยายกว้างออกไปทั้งสองด้านเรียกว่า กระบวนการขยายตัวของพื้นทะเล (sea floor spreading) และปรากฏเป็นเทือกเขากลางมหาสมุทร เช่น บริเวณกลางมหาสมุทรแอตแลนติก บริเวณทะเลแดง รอยแยก แอฟริกาตะวันออก อ่าวแคลิฟอร์เนีย มีลักษณะเป็นหุบเขาทรุด มีร่องรอยการแยก เกิดแผ่นดินไหวตื้นๆ มีภูเขาไฟและลาวาไหลอยู่ใต้มหาสมุทร
                                                      รูปแสดงการแยกออกจากกันของแผ่นธรณีภาคใต้มหาสมุทร

ในขณะที่แผ่นธรณีภาคเกิดรอยแตกและเลื่อนตัว จะมีผลทำให้เกิดคลื่นไหวสะเทือนไปยังบริเวณต่างๆ ใกล้เคียงกับจุดที่เกิดรอยแตก รอยเลื่อนในชั้นธรณีภาคเกิดเป็นปรากฏการณ์แผ่นดินไหว
2. ขอบแผ่นธรณีภาคเคลื่อนที่เข้าหากัน แบ่งเป็น 3 ลักษณะ คือ
2.1 แผ่นธรณีภาคใต้มหาสมุทรชนกับแผ่นธรณีภาคใต้มหาสมุทร แผ่นธรณีภาคแผ่นหนึ่งจะมุดลงใต้อีกแผ่นหนึ่ง ปลายของแผ่นที่มุดลงจะหลอมตัวกลายเป็นแมกมาและปะทุขึ้นมาบนแผ่นธรณีภาคใต้มหาสมุทร เกิดเป็นแนวภูเขาไฟกลางมหาสมุทร เช่น ที่หมู่เกาะมาริอานาส์ อาลูเทียน ญี่ปุ่น ฟิลิปปินส์ หมู่เกาะฮาวาย จะมีลักษณะเป็นร่องใต้ทะเลลึก มีแนวการเกิดแผ่นดินไหวตามแนวของแผ่นธรณีภาคลึกลงไปถึงชั้นเนื้อโลก รวมทั้งมีภูเขาไฟที่ยังมีพลัง
                                        รูปแสดงการชนกันระหว่างแผ่นธรณีภาคใต้มหาสมุทรกับแผ่นธรณีภาคใต้มหาสมุทร

2.2 แผ่นธรณีภาคใต้มหาสมุทรชนกับแผ่นธรณีภาคภาคพื้นทวีป แผ่นธรณีภาคใต้มหาสมุทร ที่หนักกว่าจะมุดลงใต้แผ่นธรณีภาคภาคพื้นทวีป ทำให้เกิดรอยคดโค้งเป็นเทือกเขาบนแผ่นธรณีภาคภาคพื้นทวีป เช่น ที่อเมริกาใต้แถบตะวันตก แนวชายฝั่งโอเรกอนจะมีลักษณะเป็นร่องใต้ทะเลลึก ตามแนวขอบทวีปมีภูเขาไฟปะทุในส่วนที่เป็นแผ่นดิน เกิดเป็นแนวภูเขาไฟชายฝั่ง และเกิดแผ่นดินไหวรุนแรง ส่วนแนวขอบด้านตะวันออก- เฉียงเหนือของแผ่นธรณีภาคอาระเบียที่เคลื่อนที่เข้าหาและมุดกันกับแนวขอบด้านใต้ของแผ่นธรณีภาคยูเรเชีย จะเกิดเป็นร่องลึกก้นมหาสมุทร และเกิดเป็นเทือกเขาคดโค้งอยู่บนแผ่นธรณีภาคในบริเวณประเทศตะวันออกกลาง ปัจจุบันบริเวณนี้กลายเป็นแหล่งสะสมน้ำมันดิบแหล่งใหญ่ของโลก
                   รูปแสดงการชนกันระหว่างแผ่นธรณีภาคใต้มหาสมุทรกับแผ่นธรณีภาคภาคพื้นทวีป

2.3 แผ่นธรณีภาคภาคพื้นทวีปชนกับแผ่นธรณีภาคภาคพื้นทวีป เนื่องจากแผ่นธรณีภาค ภาคพื้นทวีปทั้ง 2 แผ่นมีความหนามาก เมื่อชนกันจะทำให้ส่วนหนึ่งมุดลง อีกส่วนหนึ่งเกยกันอยู่เกิดเป็น เทือกเขาสูงแนวยาวอยู่ในแผ่นธรณีภาคภาคพื้นทวีป เช่น เทือกเขาแอลป์ในทวีปยุโรป เทือกเขาหิมาลัยใน ทวีปเอเชีย เป็นต้น แนวขอบด้านทิศเหนือของแผ่นธรณีภาคอินเดียเคลื่อนที่ชนและมุดกับแผ่นธรณีภาคยูเรเชียทางตอนใต้ ทำให้เกิดเทือกเขาหิมาลัย บริเวณดังกล่าวจะเป็นรอยย่นคดโค้งเป็นเขตที่ราบสูงเสมือนเป็นหลังคาของโลก
               รูปแสดงการเคลื่อนที่ชนกันระหว่างแผ่นธรณีภาคภาคพื้นทวีปและแผ่นธรณีภาคภาคพื้นทวีป

มาลองทำแบบฝึกหัดกันจ้ะ
แบบฝึกหัดบทที่ 2

ที่มา http://www.maceducation.com/e-knowledge/2502201100/02.htm

สำรวจระบบสุริยะจักรวาล

เนื้อหาบทที่3 เรื่อง ปรากฎการณ์ทางธรณีวิทยา

3.1 แผ่นดินไหว
  แผ่นดินไหวเป็นปรากฏการณ์ทางธรณีวิทยาที่เกิดจากการที่โลกเคลื่อนไหวผิดปกติในทันทีทันใด
ซึ่งมีทั้งการเคลื่อนไหวเพียงเล็กน้อยที่ทำให้พื้นดินสั่นไหวพอรู้สึกได้ จนถึงการเคลื่อนที่อย่างรุนแรง
ที่ทำให้เกิดอันตรายต่อบ้านเรือนและชีวิตของมนุษย์ จากข้อมูลการเกิดแผ่นดินไหวในแต่ละปีพบว่าในปีหนึ่งๆ
มีแผ่นดินไหวเกิดขึ้นทั่วโลกเฉลี่ยถึง 150,000 ครั้ง หรือวันละ 400 ครั้ง
1. สาเหตุการเกิดแผ่นดินไหว การเกิดแผ่นดินไหวเกิดจากการเคลื่อนที่ของเปลือกโลกซึ่งประกอบด้วย
ชั้นดินและหิน เมื่อเกิดแผ่นดินไหวชั้นดินและหินจะเกิดการเปลี่ยนแปลง เป็นผลทำให้เกิดความเสียหายต่อ
สภาพภูมิศาสตร์ของเปลือกโลกได้โดยปกติเมื่อมีแรงมากด ดัน หรือดึงวัตถุใดๆ วัตถุจะพยายามต้านการ
เปลี่ยนแปลงที่เกิดขึ้นโดยสะสมพลังงานในรูปของพลังงานศักย์ จนกระทั่งแรงที่มากระทำมีขนาดมากกว่าที่
วัตถุจะต้านไว้ได้ วัตถุนั้นจะเปลี่ยนแปลง รูปร่าง การเกิดแผ่นดินไหวก็เช่นกัน เมื่อมีการเคลื่อนที่ของเปลือก
โลกตามแนวรอยต่อของแผ่นธรณีภาค ทำให้ชั้นหินขนาดใหญ่แตกหักหรือเลื่อนตัว จนเกิดการถ่ายโอนพลังงานศักย์
อย่างรวดเร็วให้กับชั้นหินที่
อยู่ติดกันในรูปของคลื่นไหวสะเทือน ซึ่งจะแผ่กระจายจากจุดกำเนิดไปทุกทิศทุกทาง และสามารถเคลื่อนที่ผ่าน
ตัวกลางต่างๆ ภายในโลกขึ้นมาบนผิวโลกได้ ตำแหน่งที่เป็นจุดกำเนิดการไหวสะเทือนของแผ่นดิน หรือเกิดแผ่นดินไหวเรียกว่า
ศูนย์เกิดแผ่นดินไหว (focus) ซึ่งอาจเกิดได้หลายๆ จุดในพื้นที่ตามแนวรอยเลื่อน ศูนย์เกิดแผ่นดินไหวจะอยู่ใต้เปลือกโลกที่ระดับความลึกต่างๆ กัน
รูปแสดงการเคลื่อนที่ของคลื่นไหวสะเทือนจากแผ่นดินไหวเริ่มต้นที่ศูนย์เกิดแผ่นดินไหว



ซึ่งหินมีการเคลื่อนที่ตามแนวรอยเลื่อนอย่างฉับพลัน  ศูนย์เกิดแผ่นดินไหวที่ลึกที่สุดเท่าที่วัดได้อยู่ที่ระดับ
696 กิโลเมตรใต้พื้นโลก ตำแหน่งบนผิวโลกที่อยู่เหนือศูนย์เกิดแผ่นดินไหวเรียกว่า จุดเหนือศูนย์เกิดแผ่นดินไหว
(epicenter) แผ่นดินไหวนอกจากจะเกิดจากการเคลื่อนที่ของเปลือกโลกแล้ว ยังอาจเกิดจากสาเหตุอื่นๆ อีก
ทั้งจากธรรมชาติเองและอาจเกิดจากการกระทำของมนุษย์ ได้แก่
1) การระเบิดของภูเขาไฟ
2) การยุบตัวของโพรงใต้ดินขนาดใหญ่
3) แผ่นดินถล่ม
4) อุกกาบาตขนาดใหญ่ตกลงบนพื้นโลก
5) การทดลองระเบิดปรมาณูใต้ดิน
6) การระเบิดพื้นที่เพื่อสำรวจลักษณะของหิน สำหรับวางแผนก่อสร้างอาคารและเขื่อนขนาดใหญ่
7) การทำเหมือง
8)การทำงานของเครื่องจักรกล
9) การจราจร
2. คลื่นไหวสะเทือน เมื่อเกิดแผ่นดินไหว พลังงานที่ถูกปลดปล่อยจะอยู่ในรูปของคลื่นไหวสะเทือน ซึ่งมี 2 ชนิด
คือ คลื่นในตัวกลางและคลื่นพื้นผิว
2.1 คลื่นในตัวกลาง (body wave) เป็นคลื่นที่เคลื่อนแผ่กระจายเป็นวงรอบๆ ศูนย์เกิดแผ่นดินไหว
และเดินทางอยู่ในตัวกลางที่มีเนื้อชนิดเดียวกันตลอด คลื่นในตัวกลางแบ่งได้เป็น 2 ประเภท ได้แก่
คลื่นปฐมภูมิ และคลื่นทุติยภูมิ
รูปแสดงคลื่นในตัวกลาง
1) คลื่นปฐมภูมิ (primary wave หรือ P wave) เคลื่อนที่ด้วยอัตราเร็ว 427 กิโลเมตร/วินาที เป็นคลื่นตามยาว
เมื่อเคลื่อนที่ผ่านตัวกลางซึ่งเป็นชั้นหิน จะทำให้หินถูกอัดและขยายสลับกันไปในทิศทางเดียวกับทิศทางของคลื่น
คลื่นปฐมภูมิสามารถเคลื่อนที่ผ่านตัวกลางที่มีสถานะเป็นได้ทั้งของแข็ง ของเหลว และแก๊ส
2) คลื่นทุติยภูมิ (secondary wave หรือ S wave) เคลื่อนที่ด้วยอัตราเร็ว 225 กิโลเมตร/วินาที เป็นคลื่นตามขวาง
เมื่อเคลื่อนที่ผ่านชั้นหินทำให้ชั้นหินสั่นในทิศทางที่ตั้งฉากกับแนวทางการเคลื่อนที่ของคลื่น คลื่นทุติยภูมิสามารถ
เคลื่อนที่ผ่านตัวกลางที่เป็นของแข็งเท่านั้น ไม่สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของเหลวได้
2.2 คลื่นพื้นผิว (surface wave) เป็นคลื่นที่เคลื่อนแผ่กระจายออกไปจากจุดเหนือศูนย์เกิด แผ่นดินไหว
เคลื่อนที่ผ่านไปตามแนวพื้นผิวโลก และเคลื่อนที่ผ่านระหว่างตัวกลางที่ต่างกัน คลื่นพื้นผิวเป็น ผลรวมของคลื่นที่
เกิดจากการสั่นสะเทือน 2 ชนิด คือ
1) คลื่นตามขวาง (love wave หรือ L wave) เกิดจากการสั่นสะเทือนของพื้นผิวโลกในแนวขวางคล้ายกับการเลื้อยของงู
จึงไม่สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของเหลว เช่น ทะเลสาบ มหาสมุทร เป็นต้น แต่สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของแข็งได้ เช่น หิน ดิน เป็นต้น
2) คลื่นพื้นผิว (ray leigh wave หรือ R wave) ที่คล้ายกับคลื่นน้ำ ทำให้พื้นผิวเคลื่อนที่ขึ้นลงคล้ายกับน้ำในมหาสมุทร
ระหว่างการเกิดแผ่นดินไหวอย่างรุนแรง พื้นผิวโลกจะเคลื่อนที่ทั้งแบบขึ้นลง และขยับตัวในแนวขวางไปพร้อมๆ กัน
ซึ่งเป็นสาเหตุหนึ่งที่ส่งผลต่อรากฐานอาคาร ระบบท่อระบายน้ำและสิ่งปฏิกูล รวมทั้งท่อสายไฟ สายโทรศัพท์
และท่อต่างๆ ใต้ดินได้รับความเสียหายโดยทั่วไปคลื่นไหวสะเทือนจะมีอัตราเร็วและความสามารถในการเคลื่อนที่
ผ่านตัวกลางแต่ละชนิดได้แตกต่างกัน ขึ้นกับความยืดหยุ่นและความหนาแน่นของวัสดุตัวกลางที่คลื่นเคลื่อนที่ผ่าน
ดังนั้นถ้ามีข้อมูล ดังกล่าวเราสามารถรู้ถึงองค์ประกอบและลักษณะทางกายภาพของส่วนที่ลึกลงไปในโลกได้
คลื่นปฐมภูมิหรือคลื่น P wave สามารถเคลื่อนที่ผ่านหินเปลือกโลกที่แข็งและหนาแน่นด้วยอัตราที่ เร็วกว่า
เมื่อเคลื่อนผ่านชั้นหินที่แข็งน้อยกว่าหรือชั้นที่เป็นของเหลว ส่วนคลื่นทุติยภูมิหรือคลื่น S wave ไม่สามารถเคลื่อนที่
ผ่านของเหลวได้เลย จากเหตุผลดังกล่าวจึงเป็นหลักฐานที่ชี้ให้เห็นว่า ในบริเวณตอนล่างของชั้นเนื้อโลก
และแก่นโลกชั้นนอกซึ่งอยู่ลึกมากกว่า 2,900 กิโลเมตร ยังมีลักษณะเป็นของเหลวหนืด


รูปแสดงการเดินทางของคลื่นไหวสะเทือน



จากรูปแสดงการเดินทางของคลื่นไหวสะเทือน ถ้าภายในโลกมีความเป็นเนื้อเดียวกันตลอด คลื่นไหวสะเทือน
ที่ส่งผ่านโลกจะมีความเร็วคงที่และเดินทางเป็นเส้นตรงผ่านตลอด แต่ยิ่งลึกลงไปโลกจะถูกกดทับด้วยแรงดันสูง
อย่างต่อเนื่องและสม่ำเสมอ คลื่นไหวสะเทือนจึงเดินทางผ่านด้วยความเร็วเพิ่มขึ้นทีละน้อยตามการเพิ่มของแรงดัน
เส้นทางเดินของคลื่นจึงเบี่ยงเบนเล็กน้อยและทะลุผ่านวัสดุอย่างต่อเนื่อง แต่จากการวัดสัญญาณ คลื่นในตัวกลางพบว่า
บางตำแหน่งในโลกมีการขาดหายไปของสัญญาณคลื่น เนื่องจากคลื่น P wave และคลื่น S wave ที่เคลื่อนผ่านโลก
มีสมบัติต่างกัน คลื่น S wave ไม่สามารถผ่านตัวกลางที่เป็นของเหลว จากการบันทึกคลื่นในตัวกลางที่เกิดขึ้นพบว่า
บริเวณที่เป็นแก่นโลกไม่พบคลื่น S wave แสดงว่าแก่นโลกมีสถานะเป็นของเหลว ขณะเดียวกันเมื่อคลื่น P wave
ผ่านแก่นโลกในระดับความลึก 2,900 กิโลเมตร (แก่นโลกชั้นนอก) คลื่น P wave จะมีความเร็วลดลง
แสดงว่าแก่นโลกชั้นนอกมีสภาพเป็นของเหลว แต่เมื่อลึกประมาณ 5,000 กิโลเมตรลงไป (แก่นโลกชั้นใน)
คลื่น P wave จะมีความเร็วมากขึ้น จึงสรุปว่าแก่นโลกชั้นในมีลักษณะเป็นของแข็ง
3. เครื่องมือตรวจแผ่นดินไหว เครื่องมือที่ใช้บันทึกข้อมูลแผ่นดินไหวเรียกว่า ไซสโมกราฟ (seismograph)
เครื่องมือนี้ประกอบด้วยเครื่องรับคลื่นไหวสะเทือนและแปลงสัญญาณคลื่นไหวสะเทือนเป็นสัญญาณ ไฟฟ้า
จากนั้นสัญญาณไฟฟ้าจะถูกขยายแล้วแปลงกลับเป็นคลื่นไหวสะเทือนอีกครั้งเพื่อบันทึกลงกระดาษเป็นกราฟขึ้นลง
รูปแสดงเครื่องไซสโมกราฟ




เครื่องไซสโมกราฟในรูป เป็นเครื่องมือที่บันทึกการเคลื่อนไหวของแผ่นดินในช่วงที่เกิดแผ่นดินไหว
โดยอาศัยการทำงานของปากกาที่ลากเส้นลงบนกระดาษกราฟที่หุ้มอยู่บนกระบอกที่หมุนได้ ในช่วงที่
พื้นดินไม่มีการสั่นไหว ปากกาจะลากเส้นตรง เมื่อเกิดแผ่นดินไหวกระบอกจะสั่นไหวเป็น 2 ลักษณะ
ตามการขึ้นลงของ แผ่นดิน ถ้าแผ่นดินเคลื่อนขึ้นจะยกกระบอกขึ้น แต่สปริงจะยึดไว้ทำให้ตุ้มน้ำหนักและปากกา
เคลื่อนตัวยากจึงลากเส้นกราฟลงต่ำ แต่ถ้าแผ่นดินเคลื่อนลงลักษณะของตุ้มและปากกาจะมีการหดตัว
ปากกาจะลากเส้นสูง แต่ถ้าแผ่นดินไม่มีการสั่นไหวเส้นกราฟจะเป็นเส้นตรง ความสูงของเส้นกราฟจะขึ้น
กับความแรงในการเคลื่อนที่ของแผ่นดิน เมื่อเกิดแผ่นดินไหวต่อไปเรื่อยๆ จะได้เส้นกราฟของการเกิดแผ่นดินไหว ดังนี้



จากรูปแสดงคลื่นไหวสะเทือนของแผ่นดินไหวจากเครื่องไซสโมกราฟ คลื่นปฐมภูมิจะเดินทางมาถึง
เครื่องบันทึกก่อน ส่วนคลื่นพื้นผิวที่มีความรุนแรงมากที่สุดจะเดินทางมาถึงเครื่องบันทึกหลังสุด
ในการบันทึกการเคลื่อนที่ในแนวระดับของพื้นดินด้วยเครื่องไซสโมกราฟจะมีการบันทึกเวลาอย่างต่อเนื่อง
ทำให้ทราบเวลาที่คลื่นแผ่นดินไหวเดินทางมาถึงสถานีได้ โดยทั่วไปการตรวจจับคลื่นแผ่นดินไหวมีรัศมี
การตรวจรับได้ทั่วโลก การคำนวณตำแหน่ง เวลาเกิด และขนาดแผ่นดินไหวจะคำนวณเฉพาะคลื่นซึ่งอยู่
ห่างจากสถานีวัดไม่เกิน 1,000 กิโลเมตร
4. ขนาดและความรุนแรงของแผ่นดินไหว แผ่นดินไหวมีความรุนแรงและความถี่แตกต่างกัน
ปกติแผ่นดินไหวบนพื้นโลกเกิดขึ้นบ่อยมาก แต่ขนาดและความรุนแรงมีหลายระดับ ตั้งแต่ระดับที่คนไม่รู้สึก
แต่เครื่องไซสโมกราฟจับได้ จนถึงคนรู้สึกและก่อให้เกิดความเสียหายทั้งชีวิตและทรัพย์สิน ความเสียหายที่
เกิดจากแผ่นดินไหวไม่สามารถบ่งบอกถึงพลังงานที่เกิดจากแผ่นดินไหวได้ เพราะความรุนแรงของแผ่นดินไหว
นอกจากจะขึ้นกับพลังงานของแผ่นดินไหวแล้ว ยังขึ้นอยู่กับปัจจัยอื่นด้วย เช่น ระยะห่างจากจุดเหนือแผ่นดินไหว
บริเวณที่เกิดอยู่ส่วนใดของโลก มีโครงสร้างทางธรณีวิทยารองรับหรือไม่ สิ่งก่อสร้างมีการออกแบบเพื่อรองรับ
การเกิดแผ่นดินไหวอย่างไร ดังนั้นในการบอกว่าแผ่นดินไหวที่เกิดขึ้นมีพลังงานมากน้อยอย่างไรจึงมักบอกในรูป
ของขนาดและความรุนแรงของแผ่นดินไหว



4.1 ขนาดของแผ่นดินไหว กำหนดจากปริมาณพลังงานที่ปลดปล่อยออกมาจากศูนย์เกิด แผ่นดินไหว
ซึ่งนักวิทยาศาสตร์ชาวอเมริกันชื่อ ชาร์ล เอฟ ริกเตอร์ (Chares F. Richter) เป็นคนแรกที่คิดค้นสูตร
การวัดขนาดของแผ่นดินไหว นักวิทยาศาสตร์จึงกำหนดให้หน่วยวัดขนาดของแผ่นดินไหวเป็น
ริกเตอร์ (richter scale) มีขนาดตั้งแต่ 1.0 (รุนแรงน้อย) ถึง 9.0 (รุนแรงมาก) โดยทั่วไปขนาดของแผ่นดินไหว
ที่น้อยกว่า 2.0 ริกเตอร์  จัดเป็นแผ่นดินไหวขนาดเล็กมาก ขนาดแผ่นดินไหวตั้งแต่ 6.3 ริกเตอร์ขึ้นไป
จัดเป็นแผ่นดินไหวรุนแรง จากสถิติที่ผ่านมา แผ่นดินไหวรุนแรงที่สุดคือขนาดประมาณ 8.828.9 ริกเตอร์
ได้แก่ แผ่นดินไหวที่ประเทศ โคลัมเบีย เมื่อวันที่ 31 มกราคม พ.ศ. 2449 และแผ่นดินไหวที่เมืองโกเบ
ประเทศญี่ปุ่น เมื่อวันที่ 17 มกราคม พ.ศ. 2538 มีผู้เสียชีวิตไม่น้อยกว่า 5,000 คน มูลค่า
ความเสียหายไม่น้อยกว่า 1.25 ล้านล้านบาท เป็นต้น จากข้อมูลที่ผ่านมา การเกิดแผ่นดินไหวมีตั้งแต่ขนาด
ที่ไม่ได้สร้างความเสียหายเลย จนถึงขนาดที่ทำให้เกิดความเสียหายต่อสิ่งมีชีวิต สิ่งแวดล้อม และสภาพภูมิศาสตร์
เช่น อาคารบ้านเรือนพังทลาย แผ่นดินแยกถล่ม บางส่วนหายไปกลายเป็นแหล่งน้ำ แม่น้ำเปลี่ยนทางเดินใหม่
เกิดที่ราบสูงหรือภูเขาใหม่ เป็นต้น
4.2 ความรุนแรงของแผ่นดินไหว กำหนดจากผลกระทบหรือความเสียหายจากแผ่นดินไหวที่เกิดบนผิวโลก
ณ จุดสังเกต มาตราวัดความรุนแรงของแผ่นดินไหวกำหนดจากความรู้สึกของอาการตอบสนองของผู้คน
การเคลื่อนที่ของเครื่องเรือนและของใช้ภายในบ้าน ตลอดจนความเสียหายของบ้านเรือน
จนถึงขั้นที่ทุกสิ่งทุกอย่างพังพินาศ ซึ่งมาตราวัดความรุนแรงนี้มีการพัฒนาขึ้นมาใช้หลายมาตรา
แต่ที่นิยมกันมากที่สุดคือ มาตราเมอร์คัลลี (Mercalli scale) ซึ่งแบ่งเป็น 12 ระดับ  ดังตาราง
ตารางแสดงขนาด ระดับ และความรุนแรงของแผ่นดินไหว
ขนาด
 ระดับ
 ลักษณะความรุนแรง

น้อยกว่า3.0
 I
 คนไม่รู้สึกถึงการสั่นไหว แต่เครื่องมือตรวจจับสัญญาณได้

-
 II
 รู้สึกได้เฉพาะคนที่อยู่นิ่งๆ หรืออยู่บนอาคารสูงๆ สิ่งของแกว่งไกวช้าๆ เล็กน้อย

-
 III
 คนในบ้านรู้สึกเล็กน้อยเหมือนรถบรรทุกเล็กแล่นผ่าน และพอจะประมาณความนานของการสั่นไหวได้ แต่คนส่วนใหญ่ไม่คิดว่าเกิดแผ่นดินไหวขึ้น

4.0-4.9
 IV
 คนส่วนมากที่อยู่ในบ้านและบางส่วนที่อยู่ข้างนอกรู้สึกเหมือนรถบรรทุกหนักแล่น
4.024.9 ผ่าน รถยนต์ที่จอดอยู่จะโยก ของในบ้านสั่นไหว

-
 V
 รู้สึกได้เกือบทุกคน ของชิ้นเล็กจะเคลื่อนที่ ลูกตุ้มนาฬิกาอาจหยุด

5.0-5.9
 VI
 ทุกคนรู้สึกได้ คนที่เดินอยู่จะเอียงเซ เครื่องเรือนหนักอาจเคลื่อนที่ ต้นไม้สั่นไหวชัดเจน เกิดความเสียหายเล็กน้อย

6.0-6.9
 VII
 ทุกคนวิ่งออกนอกอาคาร ยืนได้ไม่มั่นคง คนขับรถอยู่สามารถรู้สึกการสั่นไหว อาคารมาตรฐานปานกลางเสียหายเล็กน้อย เกิดคลื่นน้ำในบึง

-
 VIII
 มีผลต่อการบังคับรถ อาคารที่ออกแบบพิเศษเสียหายเล็กน้อย อาคารมาตรฐาน
ปานกลางเสียหายชัดเจนและบางส่วนพังทลาย อาคารมาตรฐานต่ำเสียหาย อย่างหนัก สิ่งก่อสร้างทรงสูงส่วนมากพังลง เครื่องเรือนหนักจะหมุนกลับ โคลน ทรายพุ่งขึ้นจากใต้ดินเล็กน้อย มีการเปลี่ยนแปลงในบ่อน้ำ

7.0-7.9
 IX
 อาคารออกแบบพิเศษเสียหายชัดเจน อาคารมาตรฐานสูงจะเคลื่อนหนีศูนย์ อาคารมาตรฐานปานกลางเสียหายและพังทลาย สิ่งก่อสร้างเคลื่อนจากฐาน แผ่นดินแยก

-
 X
 อาคารไม้ปลูกสร้างดีบางหลังถูกทำลาย ตึกส่วนใหญ่ถูกทำลายพร้อมฐานราก แผ่นดินแยกถล่มเป็นบริเวณกว้าง รางรถบิดงอ ดินริมตลิ่งและที่ชันจะถล่ม โคลน ทราย8.028.9 พุ่งขึ้นจากรอยแยกของแผ่นดิน น้ำกระเซ็นขึ้นตลิ่ง

มากกว่า 8.0
 XI
 อาคารพังทลายเกือบหมด สะพานถูกทำลาย แผ่นดินแยกอย่างชัดเจน รางรถบิดงออย่างมาก ท่อใต้ดินเสียหายไม่สามารถใช้การได้ ดินถล่มและเลื่อนไหล

-
 XII
 ทุกสิ่งโดยรวมถูกทำลาย พื้นดินเป็นลอนคลื่นแนวระดับสายตาบิดเบี้ยวไป วัตถุกระเด็นขึ้นไปในอากาศ



(จากหนังสือ  Eathquake Information Bulletin Vol. 13, No. 14)
5. ตำแหน่งศูนย์เกิดแผ่นดินไหว จากข้อมูลการเกิดแผ่นดินไหวในอดีต พบว่าแนวการเกิดแผ่นดินไหว
 บนโลกมักเกิดซ้ำรอยเดิม ซึ่งสามารถนำมากำหนดเป็นแนวการเกิดแผ่นดินไหวได้
รูปแสดงแนวการเกิดแผ่นดินไหวของโลก



นักธรณีวิทยาพบว่า ตำแหน่งศูนย์เกิดแผ่นดินไหวสัมพันธ์กับแนวรอยต่อของแผ่นธรณีภาค แนวรอยต่อ
เหล่านี้เป็นแนวรอยต่อของแผ่นธรณีภาคที่ยังมีการเคลื่อนที่ทั้งการชนและการมุดกันที่เป็นผลทำให้เกิดแผ่นดินไหว
แนวรอยต่อที่สำคัญที่ทำให้เกิดแผ่นดินไหวมีอยู่ 3 แนว ดังนี้
5.1 แนวรอยต่อที่เกิดล้อมรอบมหาสมุทรแปซิฟิก เป็นบริเวณขอบมหาสมุทรแปซิฟิกทั้งหมดจัดเป็นบริเวณ
ที่เกิดแผ่นดินไหวค่อนข้างรุนแรงและมากที่สุด คิดเป็นร้อยละ 80 ของการเกิดแผ่นดินไหวทั่วโลก เรียกว่า
วงแหวนแห่งไฟ (ring of fire) ได้แก่ ประเทศญี่ปุ่น ฟิลิปปินส์ ด้านตะวันตกของเม็กซิโก
และด้านตะวันตกเฉียงใต้ของสหรัฐอเมริกา
5.2 แนวรอยต่อภูเขาแอลป์ในทวีปยุโรปและภูเขาหิมาลัยในทวีปเอเซีย เป็นแหล่งที่เกิด
 แผ่นดินไหวประมาณร้อยละ 15 ได้แก่ บริเวณประเทศพม่า อัฟกานิสถาน อิหร่าน ตุรกี
และแถบทะเลเมดิเตอร์เรเนียนในยุโรป แผ่นดินไหวในบริเวณนี้มีศูนย์เกิดแผ่นดินไหวระดับตื้นและลึกปานกลาง
5.3 แนวรอยต่อบริเวณแนวสันกลางมหาสมุทรต่างๆ ของโลก ได้แก่
บริเวณเทือกเขากลางมหาสมุทรแอตแลนติก แนวสันเขาใต้มหาสมุทรอินเดีย และอาร์กติก
เป็นแหล่งที่เกิดแผ่นดินไหวร้อยละ 5 ศูนย์เกิดแผ่นดินไหวบริเวณนี้อยู่ที่ระดับตื้นและเกิดเป็นแนวแคบๆ
แผ่นดินไหวเป็นปรากฏการณ์ทางธรณีวิทยาที่ไม่สามารถตรวจสอบล่วงหน้าได้ การเกิดแผ่นดินไหว
เกือบทุกครั้งที่ผ่านมามักมีความรุนแรงในระดับที่ก่อให้เกิดความสูญเสียทั้งชีวิตและทรัพย์สินไม่มากก็น้อย
นักวิทยาศาสตร์เชื่อว่าปรากฏการณ์แผ่นดินไหวจะมีแนวโน้มรุนแรงเพิ่มขึ้นในอนาคต และคาดหวังว่าใน
อนาคตมนุษย์สามารถคิดเทคโนโลยีที่จะตรวจสอบการเกิดแผ่นดินไหวล่วงหน้าเพื่อเป็นการเตือนภัยหรือ
เตรียมการป้องกันได้



3.2 ภูเขาไฟระเบิด
ภูเขาเป็นธรณีสัณฐานลักษณะหนึ่งบนพื้นผิวโลกที่เป็นแหล่งทรัพยากรธรรมชาติที่สำคัญแหล่งหนึ่ง
ส่วนภูเขาไฟเป็นภูเขาที่สามารถพ่นสารละลายร้อนและเถ้าถ่านตลอดจนเศษหินจากภายในโลก
ออกสู่พื้นผิวโลกได้ ภูเขาไฟมีทั้งชนิดที่ดับแล้วและที่มีพลังอยู่ ภูเขาไฟที่ดับแล้วเป็นภูเขาไฟที่เกิดขึ้น
มานานมากและวัตถุที่พ่นออกมาแข็งตัวกลายเป็นหินภูเขาไฟบนพื้นโลก ภูเขาจำนวนมากและเทือกเขา
ที่สำคัญของโลกหลายแห่งในปัจจุบันเป็นภูเขาไฟที่ดับแล้ว ส่วนภูเขาไฟที่มีพลังเป็นภูเขาไฟที่มีการระเบิด
ค่อนข้างถี่และอาจจะระเบิดอีก จากการสำรวจพบว่าในปัจจุบันยังคงมีภูเขาไฟที่มีพลังประมาณ 1,300 ลูก
1. การระเบิดของภูเขาไฟ ภูเขาไฟระเบิด
เป็นปรากฏการณ์ทางธรณีวิทยาที่เกิดจากการเปลี่ยนแปลง ของเปลือกโลก การระเบิดของภูเขาไฟเกิด
จากการปะทุของแมกมา แก๊ส และเถ้าจากใต้เปลือกโลก เมื่อเกิดการระเบิด แมกมา เศษหิน ฝุ่นละออง
และเถ้าถ่านของภูเขาไฟจะพ่นออกมาทางปล่องของภูเขาไฟ หรือออกมาทางช่องด้านข้างของภูเขาไฟ
หรือจากรอยแตกแยกของภูเขาไฟ
รูปแสดงโครงสร้างของภูเขาไฟ



แมกมาที่ขึ้นมาสู่ผิวโลกเรียกว่า ลาวา ลาวาที่ออกมาสู่พื้นผิวโลกจะมีอุณหภูมิสูงถึง 1,200 องศาเซลเซียส
ลาวาเป็นของเหลวหนืด จึงไหลไปตามความลาดเอียงของพื้นที่ ในขณะเดียวกันถ้าลาวาที่ออกมานั้นมีไอน้ำ
และแก๊สเป็นองค์ประกอบ แก๊สที่ออกมากับลาวาจะล่องลอยออกไปเป็นฟองอากาศแทรกตัวอยู่ใน  เนื้อลาวา
เมื่อลาวาเย็นลงจะแข็งตัวกลายเป็นหินที่มีรูอากาศเป็นช่องอยู่ภายในเรียกว่า หินบะซอลต์ ถ้าลาวาไหลเป็นปริมาณ
 มากและหนา ผิวหน้าเย็นตัวอย่างรวดเร็วในขณะที่ด้านล่างยังร้อนอยู่ จะเกิดแรงดึงบนผิว  ทำให้แตกออก
เป็นแท่งจากบนไปล่าง เรียกว่า หินแท่งบะซอลต์ หรือเสาหินบะซอลต์
รูปแสดงหินแท่งบะซอลต์หรือเสาหินบะซอลต์



ส่วนลาวาที่มีปริมาณของธาตุซิลิคอนมากจะเหนียวหนืด เมื่อระเบิดจะไหลหรือคุพ่นขึ้นมากองอยู่รอบๆ
ปล่องภูเขาไฟเป็นรูปโดม เมื่อเย็นลงจะแข็งตัวกลายเป็นหินแอนดีไซต์ หินไรโอไลต์ หรือหินออบซิเดียน 
การระเบิดของภูเขาไฟนอกจากจะเกิดจากการปะทุของแมกมา แก๊ส และเถ้าจากใต้เปลือกโลกแล้ว 
ยังอาจเกิดจากการระเบิดของแมกมาหรือหินหนืดที่มีแก๊สอยู่ด้วย เมื่อแมกมาเคลื่อนขึ้นมาใกล้ผิวโลก
ตามช่องเปิด แก๊สต่างๆ ที่ละลายอยู่ในแมกมาจะแยกตัวออกเป็นฟองลอยขึ้นด้านบนของแมกมา
เมื่อฟองแก๊สเพิ่มจำนวนมากขึ้นจะเกิดการขยายตัวอย่างรวดเร็ว ทำให้ความหนืดของแมกมาตรงที่เกิดฟอง
เพิ่มสูงขึ้นจนเกิดการแตกร้าวของฟองแก๊ส แก๊สที่ขยายตัวจึงเกิดการระเบิดอย่างรุนแรง พ่นชิ้นส่วนของภูเขาไฟ
ออกมา ซึ่งส่วนมากเป็นเศษหิน ผลึกแร่ เถ้าภูเขาไฟ และฝุ่นภูเขาไฟ ชิ้นส่วนเหล่านี้จะปลิวฟุ้งไปในอากาศ
ตกลงมาสะสมตัวบนผิวโลกทั้งในน้ำและบนบก ส่วนชิ้นส่วนภูเขาไฟที่มีไอน้ำและแก๊สประกอบอยู่ภายในที่มีอุณหภูมิ
และความดันสูง จะเกิดการขยายตัวไหลพุ่งออกมาจากช่องที่เปิดอยู่สู่ผิวโลก ไหลไปตามความลาดชันของพื้นที่
ไปสะสมตัวเช่นกัน ชิ้นส่วนภูเขาไฟเหล่านี้เมื่อเย็นตัวจะแข็งเป็นหินเรียกว่า หินตะกอนภูเขาไฟ (pyroclastic rock)
หินตะกอนภูเขาไฟมีหลายชนิด  แบ่งตามขนาดและลักษณะของชิ้นส่วนที่พ่นออกมา ดังนี้
1) หินทัฟฟ์ (tuff) เป็นหินภูเขาไฟที่เกิดจากชิ้นส่วนภูเขาไฟขนาด 0.0622 มิลลิเมตร
2) หินกรวดเหลี่ยมภูเขาไฟ (volcanic breccia) เป็นหินภูเขาไฟที่เกิดจากชิ้นส่วนภูเขาไฟที่มีขนาดใหญ่กว่า
64 มิลลิเมตร มีลักษณะเป็นเหลี่ยม (block)
3) หินกรวดมนภูเขาไฟ (agglomerate) เป็นหินภูเขาไฟที่เกิดจากชิ้นส่วนภูเขาไฟที่มีขนาดใหญ่กว่า
64 มิลลิเมตร แต่มีลักษณะรูปร่างกลมมน (bomb) เพราะเกิดการเย็นตัวอย่างรวดเร็วในอากาศ
หินบางชนิด เช่น หินแก้ว (silicate glass) เป็นหินที่เกิดจากการเย็นตัวและแข็งตัวอย่างรวดเร็วของแมกมา
กลายเป็นก้อนแก้วที่มีรูพรุน เต็มไปด้วยฟองอากาศที่ยังไม่แตกออกเป็นชิ้นเล็กๆ แต่ถ้าเกิดแรงระเบิดทำให้แตกออก
จะกลายเป็นเศษหินที่มีรูพรุนมากมีลักษณะคล้ายรังผึ้ง น้ำหนักเบา ลอยน้ำได้เรียกว่า หินพัมมิซ  (pumice)
หินที่เกิดจากการเย็นตัวของหินหนืดหรือแมกมา ซึ่งแทรกขึ้นมาจากส่วนลึกภายในโลกเรียกว่า
หินอัคนี (igneous rock) แบ่งออกเป็น หินอัคนีแทรกซอน เกิดจากการเย็นตัวอย่างช้าๆ ของแมกมาที่แทรกดันตัว
ขึ้นมาสู่เปลือกโลก ได้แก่ หินแกรนิต หินไดโอไรต์ หินแกรบโบ เป็นต้น และหินอัคนีพุ หรือหินภูเขาไฟที่แข็งตัว
หลังจากที่แมกมาปะทุออกมานอกผิวโลก ได้แก่ หินไรโอไลต์ หินบะซอลต์ และหินแอนดีไซต์ เป็นต้น
หินภูเขาไฟแต่ละชนิดจะมีลักษณะและรูปร่างแตกต่างกันดังตาราง
ตารางแสดงลักษณะและรูปร่างของหินภูเขาไฟบางชนิด
ไรโอไลต์ เนื้อละเอียดมาก อาจมีเนื้อดอก สีอ่อน ขาว ชมพู เทา
แอนดีไซต์ เนื้อละเอียด แน่นทึบ สีเทาแก่ เขียว ดำเข้ม
บะซอลต์ เนื้อแน่น ละเอียด มักมีรูพรุน สีเข้มดำ
ทัฟฟ์ เนื้อหินแน่น ประกอบด้วยเศษหินละเอียดต่างๆ สีอ่อน
ออบซิเดียน เนื้อแก้ว ไม่มีรูปผลึก สีเข้ม
พัมมิซ เนื้อมีรูพรุน เบา ลอยน้ำได้ สีอ่อน
สคอเรีย เนื้อมีรูพรุน เบา ลอยน้ำได้ สีเข้ม
หินภูเขาไฟ ลักษณะและรูปร่างของเนื้อหิน
- หินไรโอไลต์และหินแอนดีไซต์ เป็นหินที่เย็นและแข็งตัวมาจากลาวาที่มีความหนืดสูงไหลหลาก
มาจากปล่องภูเขาไฟที่ระเบิดไม่รุนแรง พบรอบปล่องภูเขาไฟรูปโดม เป็นหินที่เย็นตัวอย่างช้าๆ
จึงมีเนื้อแน่น ละเอียด มีดอกและสีต่างๆ
- หินบะซอลต์ เป็นหินภูเขาไฟที่เกิดจากการระเบิดแล้วไหลออกมาแข็งตัวภายนอก เนื้อหิน
เย็นตัวและแข็งตัวจากลาวาที่มีไอน้ำหรือแก๊สปนอยู่ จึงมีเนื้อแน่นละเอียดและมีรูพรุน
- หินทัฟฟ์ เป็นหินภูเขาไฟที่เกิดจากการแข็งตัวของเศษหินต่างๆ ที่พ่นขึ้นมาจากปล่องภูเขาไฟ
เนื่องจากการระเบิดของภูเขาไฟอย่างรุนแรง จึงมีเนื้อแน่น ประกอบด้วยเศษหินละเอียดต่างๆ
- หินออบซิเดียน เป็นหินภูเขาไฟที่เกิดจากการเย็นตัวและแข็งตัวอย่างรวดเร็วของแมกมา จึงมีลักษณะ
เป็นเนื้อแก้ว  ไม่มีรูปผลึก
- หินพัมมิซและหินสคอเรีย เป็นหินภูเขาไฟที่เกิดจากการเย็นตัวและแข็งตัวอย่างรวดเร็วของแมกมากลาย
เป็นก้อนแก้วที่มีฟองอากาศเป็นรูพรุนอยู่ภายใน แรงระเบิดทำให้แตกออก จึงเป็นเศษหินที่มีรูพรุน คล้ายรังผึ้ง
น้ำหนักเบา ลอยน้ำได้ สิ่งที่ต่างกันระหว่างหินพัมมิซและหินสคอเรีย คือ หินพัมมิซมีสีอ่อน ส่วนหินสคอเรียมีสีเข้ม
2. ประเภทของภูเขาไฟ ภูเขาไฟจะแบ่งเป็น 3 ประเภท ตามโอกาสแห่งการระเบิด คือ
2.1 ภูเขาไฟที่ยังคุกรุ่นอยู่ (active volcano) เป็นภูเขาไฟที่พร้อมที่จะระเบิดได้ทุกเวลา เบื้องล่าง ภายใต้ภูเขาไฟ
มีแมกมาอยู่ ทั่วโลกมีอยู่ประมาณ 1,300 ลูก ส่วนมากมีอยู่ในมลรัฐฮาวาย ประเทศสหรัฐอเมริกา และประมาณ
ร้อยละ 15 อยู่ในประเทศอินโดนีเซีย
2.2 ภูเขาไฟที่สงบ (domant volcano) เป็นภูเขาไฟที่ขณะนี้ดับอยู่ แต่อาจจะระเบิดขึ้นเมื่อใดก็ได้ เช่น ภูเขาไฟเซนต์เฮเลน ประเทศสหรัฐอเมริกา เป็นต้น
ภายใต้ภูเขาไฟที่สงบจะมีแมกมาร้อนเป็นของไหลอยู่ ไอน้ำ และแก๊สร้อนที่ปนอยู่จะทำให้แมกมามีความดันสูง
ถ้าไอน้ำและแก๊สร้อนที่ปนอยู่มีมากก็ยิ่งมีความดันสูงมากด้วย ถ้าแรงดันภายในมากกว่าน้ำหนัก
ของเนื้อหินที่กดทับอยู่ จะเกิดการระเบิดพ่นชิ้นส่วนภูเขาไฟออกมา หลังการระเบิดอาจมีการสะสมความดัน
ภายในอยู่ภายใต้ภูเขาไฟต่อไป เมื่อความดันภายในเอาชนะแรงกดภูเขาไฟลูกนั้นก็จะระเบิดใหม่ได้
2.3 ภูเขาไฟที่ดับแล้ว (extinct volcano) เป็นภูเขาไฟที่ดับไปแล้วอย่างสนิท ไม่มีการระเบิดอีก
เนื่องจากใต้เปลือกโลกบริเวณนั้นสงบและอยู่ในภาวะเสถียรแล้ว เช่น ภูเขาไฟคีรีมันจาโร ประเทศแทนซาเนีย
ภูเขาไฟที่สงบแล้วบางลูกมีอายุมากจนบางครั้งไม่เหลือรูปทรงของภูเขาอีก เนื่องจากถูกกัดกร่อนตามธรรมชาติ
ภูเขาไฟบางลูกที่อยู่ใต้น้ำอาจจะยังไม่ระเบิด เพราะระดับน้ำลึกกดอัดไว้ เมื่อลาวาพอกพูนขึ้นทำให้ภูเขาไฟสูงขึ้น
ความลึกก็ลดลงทำให้แรงอัดของน้ำลดลงด้วย จนแรงดันภายในชนะแรงกดของน้ำ เกิดการระเบิดออกมา
ปัจจุบันยังมีภูเขาไฟใต้น้ำอีกจำนวนมากที่ยังไม่เกิดการระเบิด ปัจจัยสำคัญที่ทำให้เกิดการระเบิดของภูเขาไฟ
ได้แก่ แมกมาที่มีทั้งความดันและอุณหภูมิสูงมาก รอยต่อของแผ่นธรณีภาค และรอยแตกบนแผ่นธรณีภาค
รูปแสดงการระเบิดของภูเขาไฟ



3. ภูมิลักษณ์ของภูเขาไฟ คือ ลักษณะรูปร่างของพื้นที่ภูเขาไฟ หลังการระเบิดของภูเขาไฟ ลาวาที่ออกมา
ทำให้ลักษณะของภูเขาไฟเปลี่ยนแปลงไป ลักษณะของการระเบิดหรือการพ่นลาวาจึงมีผลต่อ
ภูมิลักษณ์ของภูเขาไฟ ทำให้ได้ภูเขาไฟหลายรูปลักษณะ ดังนี้
3.1 ที่ราบสูงบะซอลต์ เกิดจากลาวาของหินบะซอลต์ที่มีความหนืดไม่มากนัก ไหลแผ่เป็นบริเวณ
กว้างและทับถมกันหลายชั้น เมื่อแข็งตัวกลายเป็นที่ราบและเนินเขา เช่น ที่ราบสูงบะซอลต์ บ้านซับบอน
อำเภอหนองไผ่ จังหวัดเพชรบูรณ์ ที่ราบสูงเดคคาน ประเทศอินเดีย ที่ราบสูงแถบตะวันตกเฉียงเหนือของสหรัฐอเมริกา
(รัฐวอชิงตัน) เป็นต้น
รูปแสดงตัวอย่างภูเขาหินบะซอลต์



3.2 ภูเขาไฟรูปโล่ เกิดจากลาวาของหินบะซอลต์ระเบิดออกมาแบบมีท่อ เป็นการระเบิดที่ไม่รุนแรง
ลาวาส่วนหนึ่งจะไหลแผ่กระจายทับถมกันเป็นสันนูนเหมือนภูเขาไฟเดิมขยายตัวออก ปล่องภูเขาไฟเล็กๆ
บนยอดจะจมลงไป ส่วนใหญ่จะมีลักษณะเตี้ยๆ กว้างๆ แบบกระทะคว่ำหรือโล่ เช่น ภูเขาไฟมัวนาลัวใน
หมู่เกาะฮาวาย เป็นต้น
3.3 ภูเขาไฟรูปกรวย เป็นภูเขาไฟที่เกิดขึ้นและรู้จักกันมากที่สุด มีรูปแบบของภูเขาไฟที่สวยงามที่สุด
มีลักษณะเป็นภูเขาพูนสูงเป็นรูปโดมหรือกรวย อาจมีปล่องตรงกลางหรือไม่มีก็ได้ เพราะเมื่อภูเขาไฟดับแล้ว
เนื้อลาวาแข็งตัวกลายเป็นหินอุดปล่องเอาไว้จนเต็มมองไม่เห็นปากปล่อง ภูเขาไฟรูปกรวยเกิดจากการ
พอกพูนของลาวาที่มีความหนืดมาก เมื่อถูกพ่นออกมาจึงไม่ไหลแผ่ออก มักเกิดจากการทับถมซ้อนกัน
หรือสลับกันระหว่างการไหลของลาวากับชิ้นส่วนของภูเขาไฟ เช่น ภูเขาไฟฟูจิยามา ประเทศญี่ปุ่น ภูเขาไฟเซนต์เฮเลนส์ ประเทศสหรัฐอเมริกา ภูเขาไฟมายอน ประเทศฟิลิปปินส์ ภูเขาไฟสุราบายา ประเทศอินโดนีเซีย เป็นต้น
รูปแสดงภูเขาไฟเซนต์เฮเลนส์ ประเทศสหรัฐอเมริกา ก่อนที่จะระเบิดเมื่อปี พ.ศ. 2523



ภูเขาไฟบางแห่งเมื่อเกิดการระเบิด จะทำให้ปล่องภูเขาไฟที่เกิดจากการระเบิดขยายขนาดใหญ่ขึ้นกว่าเดิม
 การระเบิดของภูเขาไฟบางแห่งทำให้พื้นที่ภูเขาไฟเดิมหลุดหายไปด้วย การทรุดตัวของภูเขาไฟและ
การกัดเซาะผุพัง นอกจากจะทำให้พื้นที่ภูเขาไฟหายไปแล้ว ยังมีผลทำให้ภูเขาไฟมีรูปร่างเปลี่ยนไปด้วย
เช่น ภูเขาไฟซันเซต ประเทศสหรัฐอเมริกา เป็นต้น
รูปแสดงภูเขาไฟซันเซต ที่มีปล่องภูเขาไฟอยู่ตรงบริเวณร่องลึกตรงกลาง



4. ผลที่เกิดจากภูเขาไฟระเบิด การระเบิดของภูเขาไฟทุกครั้ง นอกจากจะมีผลกระทบต่อชีวิต
ทรัพย์สินและสิ่งก่อสร้างแล้ว ยังมีผลกระทบต่อสิ่งแวดล้อมทั้งทางตรงและทางอ้อม
4.1 ประโยชน์ที่เกิดจากการระเบิดของภูเขาไฟ มีดังนี้1) ช่วยลดความเครียดของบริเวณใต้เปลือกโลก
ทำให้ระดับของเปลือกโลกอยู่ในสมดุล
2) ดินที่เกิดจากการผุพังสลายตัวของเศษหินภูเขาไฟจะมีแร่ธาตุต่างๆ ที่เป็นอาหารของพืชสะสมอยู่
ในดินมากมาย กลายเป็นแหล่งอุดมสมบูรณ์เหมาะแก่การเพาะปลูก
3) แร่ธาตุที่ตกผลึกอยู่ใต้ดินจะถูกแมกมาดันและพ่นขึ้นมาบนพื้นผิวโลก ลาวาที่แข็งตัวเป็น หินบะซอลต์ที่มี
แร่แทรกโดยเฉพาะอัญมณี เมื่อเวลาผ่านไปหินบะซอลต์เกิดการผุพัง แร่อัญมณีจะหลุดออกจากหินถูกพัดพา
โดยกระแสลมและน้ำสะสมตัวในบริเวณใกล้เคียง ทำให้พบอัญมณีในชั้นตะกอนที่ทับถมอยู่บน หินบะซอลต์
หินบะซอลต์จึงเป็นต้นกำเนิดและแหล่งแร่อัญมณีที่สำคัญ เช่น หินบะซอลต์ที่จังหวัดจันทบุรี ตราด
และกาญจนบุรี ที่เป็นแหล่งของทับทิม ไพลิน และพลอยอื่นๆ เป็นต้น
4) หินภูเขาไฟบางชนิดมีส่วนประกอบของแร่เฟลด์สปาร์ แร่นี้เมื่อเปลี่ยนสภาพจะให้แร่ดินขาว เช่น
แหล่งแร่ดินขาว เขาป่างคา ตำบลบ้านสา อำเภอแจ้ห่ม จังหวัดลำปาง เป็นดินขาวที่เปลี่ยนสภาพมาจากหินไรโอไลต์
ใช้เป็นวัตถุดิบในอุตสาหกรรมเซรามิก
4.2 โทษที่เกิดจากการระเบิดของภูเขาไฟ มีดังนี้1) การระเบิดของภูเขาไฟทำให้เกิดแก๊สพิษบางชนิด เช่น
แก๊สซัลเฟอร์ไดออกไซด์ แก๊สคาร์บอนมอนอกไซด์ ซึ่งเป็นอันตรายต่อสิ่งมีชีวิต
2) ลาวาที่ไหลออกจากปล่องภูเขาไฟมีความเร็วในการเคลื่อนที่สูงประมาณ 50 กิโลเมตร/ชั่วโมง
ประชาชนบริเวณใกล้เคียงอาจหนีภัยไม่ทันเป็นอันตรายต่อชีวิตและทรัพย์สิน
3) ในกรณีที่เกิดการระเบิดของภูเขาไฟใต้น้ำ จะทำให้เกิดการถ่ายโอนพลังงานสู่น้ำในทะเล หรือมหาสมุทรเกิด
เป็นคลื่นสึนามิ ที่เป็นอันตรายต่อผู้ที่อยู่บริเวณชายฝั่งทะเลในแนวการเคลื่อนที่ของคลื่น
4) การระเบิดของภูเขาไฟจะทำให้อากาศแปรปรวน มีฝนตกหนัก น้ำฝนจะชะล้างเถ้าฝุ่น เศษหินจากการระเบิด
มีลักษณะคล้ายโคลน ไหลลงสู่ที่ต่ำด้วยความเร็วสูง โคลนไหลนี้ทำให้เกิดความเสียหายต่อสิ่งก่อสร้าง
ที่อยู่อาศัย และชีวิตของมนุษย์
5) การระเบิดของภูเขาไฟมักเกิดเถ้าฝุ่นภูเขาไฟ ครอบคลุมอาณาบริเวณใกล้ภูเขาไฟ กระแสลมสามารถพัดพา
เถ้าฝุ่นเหล่านั้นไปไกลเป็นพันกิโลเมตร ทำให้เกิดมลภาวะทางอากาศและแหล่งน้ำของมนุษย์
เถ้าฝุ่นภูเขาไฟสามารถลอยขึ้นไปถึงบรรยากาศชั้นโทรโพสเฟียร์ และคงอยู่นานหลายปีกว่าจะ
ตกลงบนพื้นโลกจนหมด
5. แหล่งภูเขาไฟของโลก ภูเขาไฟเกือบทั้งหมดในโลกเกิดขึ้นในบริเวณที่แผ่นธรณีภาคมาชนกัน
โดยเฉพาะบริเวณวงแหวนแห่งไฟ แผ่นธรณีภาคมีการเคลื่อนที่ตลอดเวลาในลักษณะรูปแบบที่แตกต่างกัน
มีทั้งชนกัน แยกจากกัน มุดซ้อนกัน โดยเฉพาะอย่างยิ่งบริเวณที่แผ่นธรณีภาคมุดลอดเข้าไปใต้แผ่นธรณีภาค
อีกแผ่นหนึ่งที่เป็นแผ่นทวีป จะเป็นรอยตะเข็บต่อระหว่างแผ่นที่ยังประกบกันไม่สนิท การมุดต่ำลงไปอย่างช้าๆ
จะเป็นสาเหตุให้เกิดแผ่นดินไหวและภูเขาไฟระเบิด เพราะหินที่มุดลงไปถูกเปลี่ยนสภาพให้หลอมละลาย
แมกมาจากเนื้อชั้นในโลกจะถูกบีบดันให้พุ่งขึ้นมาหลอมละลายหินตามทางที่ผ่าน ทั้งในมหาสมุทรและแผ่นดิน
ขึ้นมาสู่พื้นผิวโลก ภูเขาไฟมีทั้งที่อยู่บนแผ่นดินและในมหาสมุทร ร้อยละ 75 ของภูเขาไฟเป็นภูเขาไฟใต้น้ำทั้งสิ้น
ภูเขาไฟที่ใหญ่ที่สุดในโลก ได้แก่ ภูเขาไฟมัวนาลัวบนเกาะฮาวาย ประเทศสหรัฐอเมริกา มีเส้นผ่านศูนย์
กลางของฐานยาวประมาณ 600 กิโลเมตร และมีความสูงประมาณ 10 กิโลเมตรจากระดับน้ำทะเล
รูปแสดงแนวการเคลื่อนที่ของแผ่นธรณีภาคและแนวการเกิดภูเขาไฟ



ภูเขาไฟส่วนใหญ่เกิดขึ้นในประเทศที่ตั้งอยู่ในบริเวณที่เป็นรอยต่อ หรือรอยแยกของแผ่นธรณีภาค
หรือบริเวณที่เป็นรอยแตกของแผ่นเปลือกโลก ซึ่งเป็นแนวเดียวกับการเกิดแผ่นดินไหว เพราะบริเวณ
ดังกล่าวเป็นบริเวณที่แมกมาซึ่งมีความร้อนและความดันสูงมากสามารถดันพุ่งขึ้นมาตามรอยต่อ รอยแยก
หรือรอยแตกของแผ่นเปลือกโลกได้ง่ายกว่าบริเวณที่ไม่มีรอยแยก จึงเกิดเป็นภูเขาไฟได้ เช่น
บริเวณรอบมหาสมุทรแปซิฟิกซึ่งเป็นแนวรอยต่อของแผ่นธรณีภาคที่ชนกันหรือมุดกันอยู่
และบริเวณรอยแยกของแผ่นธรณีภาคใต้มหาสมุทรแอตแลนติก เป็นต้น
6. ภูเขาไฟในประเทศไทย ประเทศไทยไม่เคยมีปรากฏการณ์ภูเขาไฟระเบิดในรอบ 100 ปีที่ผ่านมา
แต่มีการพบร่องรอยของภูเขาไฟในประเทศไทย เมื่อพิจารณาที่ตั้งของประเทศไทย พบว่าอยู่นอกเขต
การมุดตัวของแผ่นธรณีภาค จึงสรุปได้ว่าประเทศไทยไม่มีภูเขาไฟที่มีพลังที่จะเกิดการระเบิดขึ้นอีก
จากการสำรวจทางธรณีวิทยาพบว่า ประเทศไทยเคยมีการระเบิดของภูเขาไฟมาก่อน โดยมีหลักฐานจากหินภูเขาไฟ
หลากหลายชนิดที่กระจัดกระจายอยู่ทั่วไปในหลายจังหวัด เช่น ลพบุรี กาญจนบุรี ตราด สระบุรี ลำปาง
 สุรินทร์ ศรีสะเกษ เป็นต้น หลักฐานดังกล่าวนี้แสดงว่าครั้งหนึ่งเคยมีภูเขาไฟในประเทศไทย
คาดว่าการระเบิดช่วงสุดท้ายของภูเขาไฟในประเทศไทยแล้วเกิดการเย็นตัวให้หินบะซอลต์ที่มีอายุตั้งแต่
1.8 ล้านปี ถึง 10,000 ปีที่ผ่านมา เนื่องจากภูเขาไฟส่วนใหญ่ที่สำรวจพบในประเทศไทยเกิดขึ้นมานาน
ถูกกระบวนการกัดกร่อนผุพังทำลายไป จึงไม่สามารถเห็นรูปร่างของภูเขาไฟอย่างชัดเจน
ภูเขาไฟที่สำรวจพบในประเทศไทยที่มีรูปร่างชัดเจนมากที่สุด (มองเห็นเพียงด้านเดียว) ได้แก่ ภูเขาไฟ
ดอยผาคอกหินฟู จังหวัดลำปาง ภูพระอังคาร และภูเขาพนมรุ้ง จังหวัดบุรีรัมย์ ซึ่งจะมีปากปล่องเหลือ
ให้เห็นเป็นร่องรอย หินภูเขาไฟในประเทศไทยนอกจากจะให้ประโยชน์ทางเศรษฐกิจ เช่น หินบะซอลต์ที่จังหวัดจันทบุรี
 ตราด กาญจนบุรี เป็นแหล่งของอัญมณีที่สำคัญ หินไรโอไลต์ที่เขาปางค่า จังหวัดลำปาง
มีส่วนประกอบของแร่เฟลด์สปาร์ ที่เปลี่ยนสภาพให้แร่ดินขาว ใช้เป็นวัตถุดิบในอุตสาหกรรมเซรามิกแล้ว
ภูเขาไฟและหินภูเขาไฟบางแห่งยังเป็นแหล่งท่องเที่ยว เช่น บ้านน้ำเดือด เขาหินเหล็กไฟ อำเภอวิเชียรบุรี
จังหวัดเพชรบูรณ์ วัดเก่าแสนตุ่ม ตำบลประณีต อำเภอเขาสมิง จังหวัดตราด พบแท่งเสาหินบะซอลต์ยาว
มีหน้าตัดเป็นรูปห้าเหลี่ยมและหกเหลี่ยม ที่ชาวบ้านเรียกว่า เสาหินโบราณ ซึ่งเกิดจากการเย็นตัวอย่างรวดเร็ว
บนผิวของลาวาในขณะที่ส่วนล่างยังร้อนอยู่ ทำให้เกิดแรงดึง แล้วแตกออกเป็นแท่งจากบนลงล่าง
มีลักษณะคล้ายแท่งเสา
7. สิ่งเตือนภัยของภูเขาไฟ สัญญาณบอกเหตุการเกิดภูเขาไฟระเบิดมีหลายอย่าง พอจะเป็นสิ่งเตือนให้ทราบ
ถึงภัยพิบัติที่อาจเกิดขึ้น จะได้มีการเตรียมตัวหลบหลีกภัยธรรมชาติดังกล่าว
1) ภูเขาไฟพ่นควันมากขึ้น มีแก๊สมากขึ้น บางครั้งมีนกที่กำลังบินอยู่รับแก๊สพิษที่ลอยขึ้นบนอากาศ
แล้วตกลงมาตาย
2) ภูเขามีอาการบวมหรือเอียง เพราะมีเนื้อลาวาพ่นออกมาเสริมเนื้อภูเขา ทำให้เกิดอาการบวม หรือเอียงขึ้น
สามารถวัดได้จากกล้องสำรวจ
3) พื้นผิวมีการสั่นสะเทือนมากขึ้น มีการส่งพลังงานเสียงออกมามากขึ้นกว่าปกติ วัดได้จากเครื่องไซสโมกราฟ
คอยรายงานข้อมูลอัตราการเพิ่มการสั่นไหว
4) สุนัข หรือสัตว์เลื้อยคลานบางชนิดจะตื่นตกใจ เพราะสัตว์เหล่านี้สามารถรับรู้การสั่นสะเทือนของพื้นดินได้
ดีกว่ามนุษย์

มาลองทำแบบฝึกหัดกันดูจ้ะ
แบบฝึกหัดบทที่3